A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things
It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disrup...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2016-01, Vol.2016 (2016), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2016 |
creator | Jiang, Yang Wang, Xuhui Ding, Qiulei |
description | It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling. |
doi_str_mv | 10.1155/2016/8264879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010883189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010883189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtM2ibcxfw02FJ3graTty9axJTNtlf33dqvg0VN-8Hnv8b6EnAO7AYjjQcggGcgwiaRQB6QHUsSBAvVx2N5ZLAMVRtExOamqJWMggbEemQ_pK-buC_2WTl2BK2qcpy_eFU1el87St3yBRbMq7fyWjtw6K63e_ztD78rKN5v9a6qtnuMabU21LejY1ugt1js1W7S11Sk5MnpV4dnv2SfvD_ez0VMweX4cj4aTIOcJq4MwCSORCCEkQx0ZqTJpOJqYg0LBdFZInalMQM4BOBYmjzmHIuMykkzqJON9ctn13Xj32WBVp0vXeNuOTNt0mJQcpGrVdady76rKo0k3vlxrv02BpbsodzhJf6Ns-VXH21UK_V3-py86ja1Bo_80gOQq4j_q3X08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010883189</pqid></control><display><type>article</type><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei</creator><contributor>Yue, Chengyan</contributor><creatorcontrib>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei ; Yue, Chengyan</creatorcontrib><description>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2016/8264879</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Disruption ; Feasibility studies ; Internet of Things ; Production scheduling ; Recovery ; Rescheduling ; Task scheduling</subject><ispartof>Scientific programming, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Yang Jiang et al.</rights><rights>Copyright © 2016 Yang Jiang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</citedby><cites>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</cites><orcidid>0000-0002-1375-2637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Yue, Chengyan</contributor><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Ding, Qiulei</creatorcontrib><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><title>Scientific programming</title><description>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</description><subject>Disruption</subject><subject>Feasibility studies</subject><subject>Internet of Things</subject><subject>Production scheduling</subject><subject>Recovery</subject><subject>Rescheduling</subject><subject>Task scheduling</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtM2ibcxfw02FJ3graTty9axJTNtlf33dqvg0VN-8Hnv8b6EnAO7AYjjQcggGcgwiaRQB6QHUsSBAvVx2N5ZLAMVRtExOamqJWMggbEemQ_pK-buC_2WTl2BK2qcpy_eFU1el87St3yBRbMq7fyWjtw6K63e_ztD78rKN5v9a6qtnuMabU21LejY1ugt1js1W7S11Sk5MnpV4dnv2SfvD_ez0VMweX4cj4aTIOcJq4MwCSORCCEkQx0ZqTJpOJqYg0LBdFZInalMQM4BOBYmjzmHIuMykkzqJON9ctn13Xj32WBVp0vXeNuOTNt0mJQcpGrVdady76rKo0k3vlxrv02BpbsodzhJf6Ns-VXH21UK_V3-py86ja1Bo_80gOQq4j_q3X08</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jiang, Yang</creator><creator>Wang, Xuhui</creator><creator>Ding, Qiulei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1375-2637</orcidid></search><sort><creationdate>20160101</creationdate><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><author>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Disruption</topic><topic>Feasibility studies</topic><topic>Internet of Things</topic><topic>Production scheduling</topic><topic>Recovery</topic><topic>Rescheduling</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Ding, Qiulei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yang</au><au>Wang, Xuhui</au><au>Ding, Qiulei</au><au>Yue, Chengyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</atitle><jtitle>Scientific programming</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/8264879</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1375-2637</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2016-01, Vol.2016 (2016), p.1-9 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2010883189 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Disruption Feasibility studies Internet of Things Production scheduling Recovery Rescheduling Task scheduling |
title | A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recovery%20Model%20for%20Production%20Scheduling:%20Combination%20of%20Disruption%20Management%20and%20Internet%20of%20Things&rft.jtitle=Scientific%20programming&rft.au=Jiang,%20Yang&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2016/8264879&rft_dat=%3Cproquest_cross%3E2010883189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010883189&rft_id=info:pmid/&rfr_iscdi=true |