A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things

It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disrup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2016-01, Vol.2016 (2016), p.1-9
Hauptverfasser: Jiang, Yang, Wang, Xuhui, Ding, Qiulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2016
container_start_page 1
container_title Scientific programming
container_volume 2016
creator Jiang, Yang
Wang, Xuhui
Ding, Qiulei
description It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.
doi_str_mv 10.1155/2016/8264879
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010883189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010883189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtM2ibcxfw02FJ3graTty9axJTNtlf33dqvg0VN-8Hnv8b6EnAO7AYjjQcggGcgwiaRQB6QHUsSBAvVx2N5ZLAMVRtExOamqJWMggbEemQ_pK-buC_2WTl2BK2qcpy_eFU1el87St3yBRbMq7fyWjtw6K63e_ztD78rKN5v9a6qtnuMabU21LejY1ugt1js1W7S11Sk5MnpV4dnv2SfvD_ez0VMweX4cj4aTIOcJq4MwCSORCCEkQx0ZqTJpOJqYg0LBdFZInalMQM4BOBYmjzmHIuMykkzqJON9ctn13Xj32WBVp0vXeNuOTNt0mJQcpGrVdady76rKo0k3vlxrv02BpbsodzhJf6Ns-VXH21UK_V3-py86ja1Bo_80gOQq4j_q3X08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010883189</pqid></control><display><type>article</type><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei</creator><contributor>Yue, Chengyan</contributor><creatorcontrib>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei ; Yue, Chengyan</creatorcontrib><description>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2016/8264879</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Disruption ; Feasibility studies ; Internet of Things ; Production scheduling ; Recovery ; Rescheduling ; Task scheduling</subject><ispartof>Scientific programming, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Yang Jiang et al.</rights><rights>Copyright © 2016 Yang Jiang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</citedby><cites>FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</cites><orcidid>0000-0002-1375-2637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Yue, Chengyan</contributor><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Ding, Qiulei</creatorcontrib><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><title>Scientific programming</title><description>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</description><subject>Disruption</subject><subject>Feasibility studies</subject><subject>Internet of Things</subject><subject>Production scheduling</subject><subject>Recovery</subject><subject>Rescheduling</subject><subject>Task scheduling</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtM2ibcxfw02FJ3graTty9axJTNtlf33dqvg0VN-8Hnv8b6EnAO7AYjjQcggGcgwiaRQB6QHUsSBAvVx2N5ZLAMVRtExOamqJWMggbEemQ_pK-buC_2WTl2BK2qcpy_eFU1el87St3yBRbMq7fyWjtw6K63e_ztD78rKN5v9a6qtnuMabU21LejY1ugt1js1W7S11Sk5MnpV4dnv2SfvD_ez0VMweX4cj4aTIOcJq4MwCSORCCEkQx0ZqTJpOJqYg0LBdFZInalMQM4BOBYmjzmHIuMykkzqJON9ctn13Xj32WBVp0vXeNuOTNt0mJQcpGrVdady76rKo0k3vlxrv02BpbsodzhJf6Ns-VXH21UK_V3-py86ja1Bo_80gOQq4j_q3X08</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jiang, Yang</creator><creator>Wang, Xuhui</creator><creator>Ding, Qiulei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1375-2637</orcidid></search><sort><creationdate>20160101</creationdate><title>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</title><author>Jiang, Yang ; Wang, Xuhui ; Ding, Qiulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-26247677780ea4f89b8f3ef5319e70abd8ab9b71c3113edfc5331db384808a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Disruption</topic><topic>Feasibility studies</topic><topic>Internet of Things</topic><topic>Production scheduling</topic><topic>Recovery</topic><topic>Rescheduling</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Ding, Qiulei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yang</au><au>Wang, Xuhui</au><au>Ding, Qiulei</au><au>Yue, Chengyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things</atitle><jtitle>Scientific programming</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>It is difficult to generate the new schedule effectively for minimizing the negative impact when an unanticipated disruption occurs after a subset of tasks has been finished in production scheduling. In such cases, continuing with the original schedule may not be optimal or feasible. Based on disruption management and Internet of things (IoT), this study designs a real-time status analyzer to identify the disruption and propose a recovery model to deal with the disruption. The computational result proves that our algorithm is competitive with the existing heuristics. Furthermore, due to the tradeoff between all participators (mainly including customers, managers of production enterprise, and workers) involved in production scheduling, our model is more effective than the total rescheduling and right-shift rescheduling.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/8264879</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1375-2637</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2016-01, Vol.2016 (2016), p.1-9
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2010883189
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Disruption
Feasibility studies
Internet of Things
Production scheduling
Recovery
Rescheduling
Task scheduling
title A Recovery Model for Production Scheduling: Combination of Disruption Management and Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recovery%20Model%20for%20Production%20Scheduling:%20Combination%20of%20Disruption%20Management%20and%20Internet%20of%20Things&rft.jtitle=Scientific%20programming&rft.au=Jiang,%20Yang&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2016/8264879&rft_dat=%3Cproquest_cross%3E2010883189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010883189&rft_id=info:pmid/&rfr_iscdi=true