A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor
Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors repre...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2018-01, Vol.2018 (2018), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2018 |
creator | Pancardo, Pablo Acosta-Escalante, Francisco Hernández-Nolasco, J. A. |
description | Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work. |
doi_str_mv | 10.1155/2018/4216172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010882452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010882452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-32b303d958756fd56523aa0173926f5f676a948fcbe36f50109e03aa8245e69e3</originalsourceid><addsrcrecordid>eNqF0M9PwjAUB_DGaCKiN8-miUed9MfabUckICYYjUrgtpTtDYpzxXaI8NfbBRKPnvpe3idNvl-ELim5o1SIDiM07oSMShqxI9SicSSChIjpsZ9FFAaERtNTdObckhBJuIhaaNPFg_Vut8UjM9dZcK8c5PgFrDOVKvXOL09QL0yOa4N7pXJOF9vmnoH-9sf-D9hamwrrCk-M_ViVKgOHx05Xc6zwBJRVsxLw0A81flU14DeonLHn6KRQpYOLw9tG40H_vTcMRs8Pj73uKMi4JHXA2YwTnifCR5FFLqRgXCmfgydMFqKQkVRJGBfZDLjfCSUJEC9iFgqQCfA2ut7_u7Lmaw2uTpdmbX02l_q2SNxA5tXtXmXWOGehSFdWfyq7TSlJm2obHKeHaj2_2fOFrnK10f_pq70Gb6BQf5qRMEoY_wUKUYGf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010882452</pqid></control><display><type>article</type><title>A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pancardo, Pablo ; Acosta-Escalante, Francisco ; Hernández-Nolasco, J. A.</creator><contributor>Brankovic, Ljiljana ; Ljiljana Brankovic</contributor><creatorcontrib>Pancardo, Pablo ; Acosta-Escalante, Francisco ; Hernández-Nolasco, J. A. ; Brankovic, Ljiljana ; Ljiljana Brankovic</creatorcontrib><description>Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/4216172</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Classification ; Decision making ; Fuzzy logic ; Heart rate ; Physical work ; Supervisors ; Wearable technology ; Workplaces</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-17</ispartof><rights>Copyright © 2018 Pablo Pancardo et al.</rights><rights>Copyright © 2018 Pablo Pancardo et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-32b303d958756fd56523aa0173926f5f676a948fcbe36f50109e03aa8245e69e3</citedby><cites>FETCH-LOGICAL-c360t-32b303d958756fd56523aa0173926f5f676a948fcbe36f50109e03aa8245e69e3</cites><orcidid>0000-0003-4671-0350 ; 0000-0003-3354-5632 ; 0000-0002-5482-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Brankovic, Ljiljana</contributor><contributor>Ljiljana Brankovic</contributor><creatorcontrib>Pancardo, Pablo</creatorcontrib><creatorcontrib>Acosta-Escalante, Francisco</creatorcontrib><creatorcontrib>Hernández-Nolasco, J. A.</creatorcontrib><title>A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor</title><title>Mobile information systems</title><description>Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work.</description><subject>Classification</subject><subject>Decision making</subject><subject>Fuzzy logic</subject><subject>Heart rate</subject><subject>Physical work</subject><subject>Supervisors</subject><subject>Wearable technology</subject><subject>Workplaces</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9PwjAUB_DGaCKiN8-miUed9MfabUckICYYjUrgtpTtDYpzxXaI8NfbBRKPnvpe3idNvl-ELim5o1SIDiM07oSMShqxI9SicSSChIjpsZ9FFAaERtNTdObckhBJuIhaaNPFg_Vut8UjM9dZcK8c5PgFrDOVKvXOL09QL0yOa4N7pXJOF9vmnoH-9sf-D9hamwrrCk-M_ViVKgOHx05Xc6zwBJRVsxLw0A81flU14DeonLHn6KRQpYOLw9tG40H_vTcMRs8Pj73uKMi4JHXA2YwTnifCR5FFLqRgXCmfgydMFqKQkVRJGBfZDLjfCSUJEC9iFgqQCfA2ut7_u7Lmaw2uTpdmbX02l_q2SNxA5tXtXmXWOGehSFdWfyq7TSlJm2obHKeHaj2_2fOFrnK10f_pq70Gb6BQf5qRMEoY_wUKUYGf</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pancardo, Pablo</creator><creator>Acosta-Escalante, Francisco</creator><creator>Hernández-Nolasco, J. A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4671-0350</orcidid><orcidid>https://orcid.org/0000-0003-3354-5632</orcidid><orcidid>https://orcid.org/0000-0002-5482-6372</orcidid></search><sort><creationdate>20180101</creationdate><title>A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor</title><author>Pancardo, Pablo ; Acosta-Escalante, Francisco ; Hernández-Nolasco, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-32b303d958756fd56523aa0173926f5f676a948fcbe36f50109e03aa8245e69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Decision making</topic><topic>Fuzzy logic</topic><topic>Heart rate</topic><topic>Physical work</topic><topic>Supervisors</topic><topic>Wearable technology</topic><topic>Workplaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pancardo, Pablo</creatorcontrib><creatorcontrib>Acosta-Escalante, Francisco</creatorcontrib><creatorcontrib>Hernández-Nolasco, J. A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pancardo, Pablo</au><au>Acosta-Escalante, Francisco</au><au>Hernández-Nolasco, J. A.</au><au>Brankovic, Ljiljana</au><au>Ljiljana Brankovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4216172</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4671-0350</orcidid><orcidid>https://orcid.org/0000-0003-3354-5632</orcidid><orcidid>https://orcid.org/0000-0002-5482-6372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2018-01, Vol.2018 (2018), p.1-17 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2010882452 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Classification Decision making Fuzzy logic Heart rate Physical work Supervisors Wearable technology Workplaces |
title | A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fuzzy%20Logic-Based%20Personalized%20Method%20to%20Classify%20Perceived%20Exertion%20in%20Workplaces%20Using%20a%20Wearable%20Heart%20Rate%20Sensor&rft.jtitle=Mobile%20information%20systems&rft.au=Pancardo,%20Pablo&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/4216172&rft_dat=%3Cproquest_cross%3E2010882452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010882452&rft_id=info:pmid/&rfr_iscdi=true |