Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions

Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular systems design & engineering 2018-02, Vol.3 (1), p.253-263
Hauptverfasser: Beckner, Wesley, Mao, Coco M, Pfaendtner, Jim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 1
container_start_page 253
container_title Molecular systems design & engineering
container_volume 3
creator Beckner, Wesley
Mao, Coco M
Pfaendtner, Jim
description Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating ∼1200 physiochemical features with PyChem and RDKit, selecting 11 features with the least absolute shrinkage selection operator (LASSO) method, and using the selected features to train a multi-layer perceptron regressor-a class of feedforward artificial neural network (ANN). The interpretability of the LASSO model allows a physical interpretation of the model development framework while the flexibility and non-linearity of the hidden layer of the ANN optimizes performance. The method is tested on a range of temperatures, pressures, and viscosities to evaluate its efficacy in a general-purpose setting. The model was trained on 578 datapoints including a temperature range of 273.15-373.15 K, pressure range of 60-160 kPa, viscosity range of 0.0035-0.993 Pa s, and ILs of imidazolium, phosphonium, pyridinium, and pyrrolidinium classes to give 33 different salts altogether. The model had a validation set mean squared error of 4.7 × 10 −4 ± 2.4 × 10 −5 Pa s or relative absolute average deviation of 7.1 ± 1.3%. Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn.
doi_str_mv 10.1039/c7me00094d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010867994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010867994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e6ee50f9d22fa6288d59296075d41333e8d26da35ad186aabfc933448c0235fd3</originalsourceid><addsrcrecordid>eNpN0TtPwzAQAGALgURVurAjWWJDKjh24tgjKk-piAGYI9e-gKskTm0H6E_gX-O2CJjuhu9O90DoOCPnGWHyQpctEEJkbvbQiJJCTCUXcv9ffogmISyTybjgtOAj9PUUVbQhWq0a3DoDTcDKA1aLBnB0uPdgrI7Yus5q3NjVYA1-t0G7YOMaK-1dSBX4wxrAXnWvgF2N9Ru024710OmYalVjo4UEO4PhswdvW-hiAtp1xm5EOEIHtWoCTH7iGL3cXD_P7qbzx9v72eV8qhmlcQocoCC1NJTWilMhTCGp5KQsTJ4xxkAYyo1ihTKZ4Eotai0Zy3OhCWVFbdgYne769t6tBgixWrrBpwlDRUlGBC-lzJM626ntgh7qqk8zK7-uMlJtrl3Nyofr7bWvEj7ZYR_0r_v7BvsGkE9-eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010867994</pqid></control><display><type>article</type><title>Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Beckner, Wesley ; Mao, Coco M ; Pfaendtner, Jim</creator><creatorcontrib>Beckner, Wesley ; Mao, Coco M ; Pfaendtner, Jim</creatorcontrib><description>Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating ∼1200 physiochemical features with PyChem and RDKit, selecting 11 features with the least absolute shrinkage selection operator (LASSO) method, and using the selected features to train a multi-layer perceptron regressor-a class of feedforward artificial neural network (ANN). The interpretability of the LASSO model allows a physical interpretation of the model development framework while the flexibility and non-linearity of the hidden layer of the ANN optimizes performance. The method is tested on a range of temperatures, pressures, and viscosities to evaluate its efficacy in a general-purpose setting. The model was trained on 578 datapoints including a temperature range of 273.15-373.15 K, pressure range of 60-160 kPa, viscosity range of 0.0035-0.993 Pa s, and ILs of imidazolium, phosphonium, pyridinium, and pyrrolidinium classes to give 33 different salts altogether. The model had a validation set mean squared error of 4.7 × 10 −4 ± 2.4 × 10 −5 Pa s or relative absolute average deviation of 7.1 ± 1.3%. Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/c7me00094d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Downloading ; Ionic liquids ; Linearity ; Neural networks ; Physiochemistry ; Shrinkage ; Source code ; Statistical models ; Toolkits ; Viscosity</subject><ispartof>Molecular systems design &amp; engineering, 2018-02, Vol.3 (1), p.253-263</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e6ee50f9d22fa6288d59296075d41333e8d26da35ad186aabfc933448c0235fd3</citedby><cites>FETCH-LOGICAL-c322t-e6ee50f9d22fa6288d59296075d41333e8d26da35ad186aabfc933448c0235fd3</cites><orcidid>0000-0001-6727-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Beckner, Wesley</creatorcontrib><creatorcontrib>Mao, Coco M</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><title>Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions</title><title>Molecular systems design &amp; engineering</title><description>Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating ∼1200 physiochemical features with PyChem and RDKit, selecting 11 features with the least absolute shrinkage selection operator (LASSO) method, and using the selected features to train a multi-layer perceptron regressor-a class of feedforward artificial neural network (ANN). The interpretability of the LASSO model allows a physical interpretation of the model development framework while the flexibility and non-linearity of the hidden layer of the ANN optimizes performance. The method is tested on a range of temperatures, pressures, and viscosities to evaluate its efficacy in a general-purpose setting. The model was trained on 578 datapoints including a temperature range of 273.15-373.15 K, pressure range of 60-160 kPa, viscosity range of 0.0035-0.993 Pa s, and ILs of imidazolium, phosphonium, pyridinium, and pyrrolidinium classes to give 33 different salts altogether. The model had a validation set mean squared error of 4.7 × 10 −4 ± 2.4 × 10 −5 Pa s or relative absolute average deviation of 7.1 ± 1.3%. Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn.</description><subject>Artificial neural networks</subject><subject>Downloading</subject><subject>Ionic liquids</subject><subject>Linearity</subject><subject>Neural networks</subject><subject>Physiochemistry</subject><subject>Shrinkage</subject><subject>Source code</subject><subject>Statistical models</subject><subject>Toolkits</subject><subject>Viscosity</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpN0TtPwzAQAGALgURVurAjWWJDKjh24tgjKk-piAGYI9e-gKskTm0H6E_gX-O2CJjuhu9O90DoOCPnGWHyQpctEEJkbvbQiJJCTCUXcv9ffogmISyTybjgtOAj9PUUVbQhWq0a3DoDTcDKA1aLBnB0uPdgrI7Yus5q3NjVYA1-t0G7YOMaK-1dSBX4wxrAXnWvgF2N9Ru024710OmYalVjo4UEO4PhswdvW-hiAtp1xm5EOEIHtWoCTH7iGL3cXD_P7qbzx9v72eV8qhmlcQocoCC1NJTWilMhTCGp5KQsTJ4xxkAYyo1ihTKZ4Eotai0Zy3OhCWVFbdgYne769t6tBgixWrrBpwlDRUlGBC-lzJM626ntgh7qqk8zK7-uMlJtrl3Nyofr7bWvEj7ZYR_0r_v7BvsGkE9-eg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Beckner, Wesley</creator><creator>Mao, Coco M</creator><creator>Pfaendtner, Jim</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid></search><sort><creationdate>20180201</creationdate><title>Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions</title><author>Beckner, Wesley ; Mao, Coco M ; Pfaendtner, Jim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e6ee50f9d22fa6288d59296075d41333e8d26da35ad186aabfc933448c0235fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Downloading</topic><topic>Ionic liquids</topic><topic>Linearity</topic><topic>Neural networks</topic><topic>Physiochemistry</topic><topic>Shrinkage</topic><topic>Source code</topic><topic>Statistical models</topic><topic>Toolkits</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckner, Wesley</creatorcontrib><creatorcontrib>Mao, Coco M</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckner, Wesley</au><au>Mao, Coco M</au><au>Pfaendtner, Jim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions</atitle><jtitle>Molecular systems design &amp; engineering</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>253</spage><epage>263</epage><pages>253-263</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn. The process consists of downloading ∼700 datapoints from ILThermo, generating ∼1200 physiochemical features with PyChem and RDKit, selecting 11 features with the least absolute shrinkage selection operator (LASSO) method, and using the selected features to train a multi-layer perceptron regressor-a class of feedforward artificial neural network (ANN). The interpretability of the LASSO model allows a physical interpretation of the model development framework while the flexibility and non-linearity of the hidden layer of the ANN optimizes performance. The method is tested on a range of temperatures, pressures, and viscosities to evaluate its efficacy in a general-purpose setting. The model was trained on 578 datapoints including a temperature range of 273.15-373.15 K, pressure range of 60-160 kPa, viscosity range of 0.0035-0.993 Pa s, and ILs of imidazolium, phosphonium, pyridinium, and pyrrolidinium classes to give 33 different salts altogether. The model had a validation set mean squared error of 4.7 × 10 −4 ± 2.4 × 10 −5 Pa s or relative absolute average deviation of 7.1 ± 1.3%. Herein we present a method of developing predictive models of viscosity for ionic liquids (ILs) using publicly available data in the ILThermo database and the open-source software toolkits PyChem, RDKit, and SciKit-Learn.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7me00094d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9689
ispartof Molecular systems design & engineering, 2018-02, Vol.3 (1), p.253-263
issn 2058-9689
2058-9689
language eng
recordid cdi_proquest_journals_2010867994
source Royal Society Of Chemistry Journals 2008-
subjects Artificial neural networks
Downloading
Ionic liquids
Linearity
Neural networks
Physiochemistry
Shrinkage
Source code
Statistical models
Toolkits
Viscosity
title Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20models%20are%20able%20to%20predict%20ionic%20liquid%20viscosity%20across%20a%20wide%20range%20of%20chemical%20functionalities%20and%20experimental%20conditions&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Beckner,%20Wesley&rft.date=2018-02-01&rft.volume=3&rft.issue=1&rft.spage=253&rft.epage=263&rft.pages=253-263&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/c7me00094d&rft_dat=%3Cproquest_cross%3E2010867994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010867994&rft_id=info:pmid/&rfr_iscdi=true