Figure of merit ZT of a thermoelectric device defined from materials properties

While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2017-01, Vol.10 (11), p.2280-2283
Hauptverfasser: Snyder, G. Jeffrey, Snyder, Alemayouh H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2283
container_issue 11
container_start_page 2280
container_title Energy & environmental science
container_volume 10
creator Snyder, G. Jeffrey
Snyder, Alemayouh H.
description While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal conductivity κ where T is the absolute temperature. Historically the field has used a thermoelectric device figure of merit ZT to characterize a device operating between a hot side temperature T h and cold side temperature T c . While there are many approximate methods to calculate ZT from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device η calculated from the exact method.
doi_str_mv 10.1039/C7EE02007D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010865674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010865674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</originalsourceid><addsrcrecordid>eNpFUMFKAzEUDKJgrV78goA3YfUlu0mao9S2CoVe9uRl2U1eNKXbrUkq-PdmqeJp5j3mvRmGkFsGDwxK_ThXiwVwAPV8RiZMiaoQCuT5H5eaX5KrGLcAkoPSE7JZ-vdjQDo42mPwib7VI29p-sDQD7hDk4I31OKXN5jB-T1a6sLQ075N-aTdRXoIwwFD8hivyYXLG7z5xSmpl4t6_lKsN6vX-dO6MKWUqRDM2o4LYWDGhM7hwEqokJtOcQW8065zZTWTBiwvtbJKA0ctuXN54FU5JXent9n584gxNdvhGPbZseHAYCaFVKPq_qQyYYgxoGsOwfdt-G4YNGNfzX9f5Q9sclvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010865674</pqid></control><display><type>article</type><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</creator><creatorcontrib>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</creatorcontrib><description>While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal conductivity κ where T is the absolute temperature. Historically the field has used a thermoelectric device figure of merit ZT to characterize a device operating between a hot side temperature T h and cold side temperature T c . While there are many approximate methods to calculate ZT from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device η calculated from the exact method.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C7EE02007D</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Approximation ; Electrical resistivity ; Figure of merit ; Heat conductivity ; Historical account ; Mathematical analysis ; Seebeck effect ; Temperature ; Temperature dependence ; Temperature effects ; Thermal conductivity ; Thermoelectric generators ; Thermoelectric materials</subject><ispartof>Energy &amp; environmental science, 2017-01, Vol.10 (11), p.2280-2283</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</citedby><cites>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</cites><orcidid>0000-0003-1414-8682 ; 0000-0001-6980-7636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><title>Energy &amp; environmental science</title><description>While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal conductivity κ where T is the absolute temperature. Historically the field has used a thermoelectric device figure of merit ZT to characterize a device operating between a hot side temperature T h and cold side temperature T c . While there are many approximate methods to calculate ZT from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device η calculated from the exact method.</description><subject>Approximation</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Historical account</subject><subject>Mathematical analysis</subject><subject>Seebeck effect</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFUMFKAzEUDKJgrV78goA3YfUlu0mao9S2CoVe9uRl2U1eNKXbrUkq-PdmqeJp5j3mvRmGkFsGDwxK_ThXiwVwAPV8RiZMiaoQCuT5H5eaX5KrGLcAkoPSE7JZ-vdjQDo42mPwib7VI29p-sDQD7hDk4I31OKXN5jB-T1a6sLQ075N-aTdRXoIwwFD8hivyYXLG7z5xSmpl4t6_lKsN6vX-dO6MKWUqRDM2o4LYWDGhM7hwEqokJtOcQW8065zZTWTBiwvtbJKA0ctuXN54FU5JXent9n584gxNdvhGPbZseHAYCaFVKPq_qQyYYgxoGsOwfdt-G4YNGNfzX9f5Q9sclvQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Snyder, G. Jeffrey</creator><creator>Snyder, Alemayouh H.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-6980-7636</orcidid></search><sort><creationdate>20170101</creationdate><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><author>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Historical account</topic><topic>Mathematical analysis</topic><topic>Seebeck effect</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, G. Jeffrey</au><au>Snyder, Alemayouh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Figure of merit ZT of a thermoelectric device defined from materials properties</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>10</volume><issue>11</issue><spage>2280</spage><epage>2283</epage><pages>2280-2283</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal conductivity κ where T is the absolute temperature. Historically the field has used a thermoelectric device figure of merit ZT to characterize a device operating between a hot side temperature T h and cold side temperature T c . While there are many approximate methods to calculate ZT from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device η calculated from the exact method.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7EE02007D</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-6980-7636</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2017-01, Vol.10 (11), p.2280-2283
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2010865674
source Royal Society Of Chemistry Journals 2008-
subjects Approximation
Electrical resistivity
Figure of merit
Heat conductivity
Historical account
Mathematical analysis
Seebeck effect
Temperature
Temperature dependence
Temperature effects
Thermal conductivity
Thermoelectric generators
Thermoelectric materials
title Figure of merit ZT of a thermoelectric device defined from materials properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Figure%20of%20merit%20ZT%20of%20a%20thermoelectric%20device%20defined%20from%20materials%20properties&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Snyder,%20G.%20Jeffrey&rft.date=2017-01-01&rft.volume=10&rft.issue=11&rft.spage=2280&rft.epage=2283&rft.pages=2280-2283&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C7EE02007D&rft_dat=%3Cproquest_cross%3E2010865674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010865674&rft_id=info:pmid/&rfr_iscdi=true