Figure of merit ZT of a thermoelectric device defined from materials properties
While the thermoelectric materials figure of merit is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient S , the electrical resistivity ρ , and the thermal c...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2017-01, Vol.10 (11), p.2280-2283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2283 |
---|---|
container_issue | 11 |
container_start_page | 2280 |
container_title | Energy & environmental science |
container_volume | 10 |
creator | Snyder, G. Jeffrey Snyder, Alemayouh H. |
description | While the thermoelectric materials figure of merit
is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient
S
, the electrical resistivity
ρ
, and the thermal conductivity
κ
where
T
is the absolute temperature. Historically the field has used a thermoelectric device figure of merit
ZT
to characterize a device operating between a hot side temperature
T
h
and cold side temperature
T
c
. While there are many approximate methods to calculate
ZT
from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit
is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device
η
calculated from the exact method. |
doi_str_mv | 10.1039/C7EE02007D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010865674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010865674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</originalsourceid><addsrcrecordid>eNpFUMFKAzEUDKJgrV78goA3YfUlu0mao9S2CoVe9uRl2U1eNKXbrUkq-PdmqeJp5j3mvRmGkFsGDwxK_ThXiwVwAPV8RiZMiaoQCuT5H5eaX5KrGLcAkoPSE7JZ-vdjQDo42mPwib7VI29p-sDQD7hDk4I31OKXN5jB-T1a6sLQ075N-aTdRXoIwwFD8hivyYXLG7z5xSmpl4t6_lKsN6vX-dO6MKWUqRDM2o4LYWDGhM7hwEqokJtOcQW8065zZTWTBiwvtbJKA0ctuXN54FU5JXent9n584gxNdvhGPbZseHAYCaFVKPq_qQyYYgxoGsOwfdt-G4YNGNfzX9f5Q9sclvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010865674</pqid></control><display><type>article</type><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</creator><creatorcontrib>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</creatorcontrib><description>While the thermoelectric materials figure of merit
is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient
S
, the electrical resistivity
ρ
, and the thermal conductivity
κ
where
T
is the absolute temperature. Historically the field has used a thermoelectric device figure of merit
ZT
to characterize a device operating between a hot side temperature
T
h
and cold side temperature
T
c
. While there are many approximate methods to calculate
ZT
from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit
is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device
η
calculated from the exact method.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C7EE02007D</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Approximation ; Electrical resistivity ; Figure of merit ; Heat conductivity ; Historical account ; Mathematical analysis ; Seebeck effect ; Temperature ; Temperature dependence ; Temperature effects ; Thermal conductivity ; Thermoelectric generators ; Thermoelectric materials</subject><ispartof>Energy & environmental science, 2017-01, Vol.10 (11), p.2280-2283</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</citedby><cites>FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</cites><orcidid>0000-0003-1414-8682 ; 0000-0001-6980-7636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><title>Energy & environmental science</title><description>While the thermoelectric materials figure of merit
is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient
S
, the electrical resistivity
ρ
, and the thermal conductivity
κ
where
T
is the absolute temperature. Historically the field has used a thermoelectric device figure of merit
ZT
to characterize a device operating between a hot side temperature
T
h
and cold side temperature
T
c
. While there are many approximate methods to calculate
ZT
from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit
is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device
η
calculated from the exact method.</description><subject>Approximation</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Historical account</subject><subject>Mathematical analysis</subject><subject>Seebeck effect</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFUMFKAzEUDKJgrV78goA3YfUlu0mao9S2CoVe9uRl2U1eNKXbrUkq-PdmqeJp5j3mvRmGkFsGDwxK_ThXiwVwAPV8RiZMiaoQCuT5H5eaX5KrGLcAkoPSE7JZ-vdjQDo42mPwib7VI29p-sDQD7hDk4I31OKXN5jB-T1a6sLQ075N-aTdRXoIwwFD8hivyYXLG7z5xSmpl4t6_lKsN6vX-dO6MKWUqRDM2o4LYWDGhM7hwEqokJtOcQW8065zZTWTBiwvtbJKA0ctuXN54FU5JXent9n584gxNdvhGPbZseHAYCaFVKPq_qQyYYgxoGsOwfdt-G4YNGNfzX9f5Q9sclvQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Snyder, G. Jeffrey</creator><creator>Snyder, Alemayouh H.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-6980-7636</orcidid></search><sort><creationdate>20170101</creationdate><title>Figure of merit ZT of a thermoelectric device defined from materials properties</title><author>Snyder, G. Jeffrey ; Snyder, Alemayouh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-51ddb255c081591750d604e2cb72702b9fbf3486c0d2397d7902e962ff97d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Historical account</topic><topic>Mathematical analysis</topic><topic>Seebeck effect</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, G. Jeffrey</au><au>Snyder, Alemayouh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Figure of merit ZT of a thermoelectric device defined from materials properties</atitle><jtitle>Energy & environmental science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>10</volume><issue>11</issue><spage>2280</spage><epage>2283</epage><pages>2280-2283</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>While the thermoelectric materials figure of merit
is a well defined metric to evaluate thermoelectric materials, it can be a poor metric for maximum thermoelectric device efficiency because of the temperature dependence of the Seebeck coefficient
S
, the electrical resistivity
ρ
, and the thermal conductivity
κ
where
T
is the absolute temperature. Historically the field has used a thermoelectric device figure of merit
ZT
to characterize a device operating between a hot side temperature
T
h
and cold side temperature
T
c
. While there are many approximate methods to calculate
ZT
from temperature dependent materials properties, an exact method is given here that uses a simple algorithm that can be performed on a spreadsheet calculator. The figure of merit
is defined for a thermoelectric generator using the maximum efficiency of the thermoelectric device
η
calculated from the exact method.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7EE02007D</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-6980-7636</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2017-01, Vol.10 (11), p.2280-2283 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2010865674 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Approximation Electrical resistivity Figure of merit Heat conductivity Historical account Mathematical analysis Seebeck effect Temperature Temperature dependence Temperature effects Thermal conductivity Thermoelectric generators Thermoelectric materials |
title | Figure of merit ZT of a thermoelectric device defined from materials properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Figure%20of%20merit%20ZT%20of%20a%20thermoelectric%20device%20defined%20from%20materials%20properties&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Snyder,%20G.%20Jeffrey&rft.date=2017-01-01&rft.volume=10&rft.issue=11&rft.spage=2280&rft.epage=2283&rft.pages=2280-2283&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C7EE02007D&rft_dat=%3Cproquest_cross%3E2010865674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010865674&rft_id=info:pmid/&rfr_iscdi=true |