Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method
Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemi...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2017, Vol.19 (23), p.5599-5607 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5607 |
---|---|
container_issue | 23 |
container_start_page | 5599 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 19 |
creator | You, Y. Mayyas, M. Xu, S. Mansuri, I. Gaikwad, V. Munroe, P. Sahajwalla, V. Joshi, R. K. |
description | Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO
2
, CH
4
and CO, can be controlled
via
a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents. |
doi_str_mv | 10.1039/C7GC02523H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010858995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010858995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4RdY4oYIeP2IkyMKJUUq9MDjajmxQ1I1cbBTqv57AkVwmh1pdlfzIXQO5BoIS28ymWeECsrmB2gCPGZRSiU5_JtjeoxOQlgRAiBjPkGPuXfbocauwk_NEne6c96ZcIWfm-zHbRtvA9adwa3r3FrvrMfvXve17Sz-bDTWOHu7w60damdO0VGl18Ge_eoUvd7PXrJ5tFjmD9ntIippGg9RAZwZWVSCWCOgpJXmjHOZQAGMFAm1NklTgCIBFpeGlGMjKXhlrOFGxGXKpuhif7f37mNjw6BWbuO78aWiBEgixn0xpi73qdK7ELytVO-bVvudAqK-cal_XOwLSQNazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010858995</pqid></control><display><type>article</type><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</creator><creatorcontrib>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</creatorcontrib><description>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO
2
, CH
4
and CO, can be controlled
via
a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/C7GC02523H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Carbon sources ; Chemical vapor deposition ; Gases ; Graphene ; Green chemistry ; Heat treatment ; Landfills ; Monolayers ; Nanoparticles ; Nanorods ; Nanotechnology ; Nanowires ; Nickel oxides ; Polymers ; Reagents ; Regulated flow ; Reproducibility ; Rubber ; Silicon carbide ; Substrates ; Sustainability ; Tires ; Waste disposal sites ; Waste materials ; Waste treatment ; Waste utilization</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (23), p.5599-5607</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</citedby><cites>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</cites><orcidid>0000-0002-7497-9499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>You, Y.</creatorcontrib><creatorcontrib>Mayyas, M.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Mansuri, I.</creatorcontrib><creatorcontrib>Gaikwad, V.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Sahajwalla, V.</creatorcontrib><creatorcontrib>Joshi, R. K.</creatorcontrib><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO
2
, CH
4
and CO, can be controlled
via
a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</description><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Chemical vapor deposition</subject><subject>Gases</subject><subject>Graphene</subject><subject>Green chemistry</subject><subject>Heat treatment</subject><subject>Landfills</subject><subject>Monolayers</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel oxides</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Regulated flow</subject><subject>Reproducibility</subject><subject>Rubber</subject><subject>Silicon carbide</subject><subject>Substrates</subject><subject>Sustainability</subject><subject>Tires</subject><subject>Waste disposal sites</subject><subject>Waste materials</subject><subject>Waste treatment</subject><subject>Waste utilization</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqVw4RdY4oYIeP2IkyMKJUUq9MDjajmxQ1I1cbBTqv57AkVwmh1pdlfzIXQO5BoIS28ymWeECsrmB2gCPGZRSiU5_JtjeoxOQlgRAiBjPkGPuXfbocauwk_NEne6c96ZcIWfm-zHbRtvA9adwa3r3FrvrMfvXve17Sz-bDTWOHu7w60damdO0VGl18Ge_eoUvd7PXrJ5tFjmD9ntIippGg9RAZwZWVSCWCOgpJXmjHOZQAGMFAm1NklTgCIBFpeGlGMjKXhlrOFGxGXKpuhif7f37mNjw6BWbuO78aWiBEgixn0xpi73qdK7ELytVO-bVvudAqK-cal_XOwLSQNazg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>You, Y.</creator><creator>Mayyas, M.</creator><creator>Xu, S.</creator><creator>Mansuri, I.</creator><creator>Gaikwad, V.</creator><creator>Munroe, P.</creator><creator>Sahajwalla, V.</creator><creator>Joshi, R. K.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7497-9499</orcidid></search><sort><creationdate>2017</creationdate><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><author>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Chemical vapor deposition</topic><topic>Gases</topic><topic>Graphene</topic><topic>Green chemistry</topic><topic>Heat treatment</topic><topic>Landfills</topic><topic>Monolayers</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel oxides</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Regulated flow</topic><topic>Reproducibility</topic><topic>Rubber</topic><topic>Silicon carbide</topic><topic>Substrates</topic><topic>Sustainability</topic><topic>Tires</topic><topic>Waste disposal sites</topic><topic>Waste materials</topic><topic>Waste treatment</topic><topic>Waste utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Y.</creatorcontrib><creatorcontrib>Mayyas, M.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Mansuri, I.</creatorcontrib><creatorcontrib>Gaikwad, V.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Sahajwalla, V.</creatorcontrib><creatorcontrib>Joshi, R. K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Y.</au><au>Mayyas, M.</au><au>Xu, S.</au><au>Mansuri, I.</au><au>Gaikwad, V.</au><au>Munroe, P.</au><au>Sahajwalla, V.</au><au>Joshi, R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>23</issue><spage>5599</spage><epage>5607</epage><pages>5599-5607</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO
2
, CH
4
and CO, can be controlled
via
a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7GC02523H</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7497-9499</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (23), p.5599-5607 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_proquest_journals_2010858995 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carbon dioxide Carbon sources Chemical vapor deposition Gases Graphene Green chemistry Heat treatment Landfills Monolayers Nanoparticles Nanorods Nanotechnology Nanowires Nickel oxides Polymers Reagents Regulated flow Reproducibility Rubber Silicon carbide Substrates Sustainability Tires Waste disposal sites Waste materials Waste treatment Waste utilization |
title | Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20NiO%20nanorods,%20SiC%20nanowires%20and%20monolayer%20graphene%20via%20a%20CVD%20method&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=You,%20Y.&rft.date=2017&rft.volume=19&rft.issue=23&rft.spage=5599&rft.epage=5607&rft.pages=5599-5607&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/C7GC02523H&rft_dat=%3Cproquest_cross%3E2010858995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010858995&rft_id=info:pmid/&rfr_iscdi=true |