Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method

Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2017, Vol.19 (23), p.5599-5607
Hauptverfasser: You, Y., Mayyas, M., Xu, S., Mansuri, I., Gaikwad, V., Munroe, P., Sahajwalla, V., Joshi, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5607
container_issue 23
container_start_page 5599
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 19
creator You, Y.
Mayyas, M.
Xu, S.
Mansuri, I.
Gaikwad, V.
Munroe, P.
Sahajwalla, V.
Joshi, R. K.
description Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO 2 , CH 4 and CO, can be controlled via a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.
doi_str_mv 10.1039/C7GC02523H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010858995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010858995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4RdY4oYIeP2IkyMKJUUq9MDjajmxQ1I1cbBTqv57AkVwmh1pdlfzIXQO5BoIS28ymWeECsrmB2gCPGZRSiU5_JtjeoxOQlgRAiBjPkGPuXfbocauwk_NEne6c96ZcIWfm-zHbRtvA9adwa3r3FrvrMfvXve17Sz-bDTWOHu7w60damdO0VGl18Ge_eoUvd7PXrJ5tFjmD9ntIippGg9RAZwZWVSCWCOgpJXmjHOZQAGMFAm1NklTgCIBFpeGlGMjKXhlrOFGxGXKpuhif7f37mNjw6BWbuO78aWiBEgixn0xpi73qdK7ELytVO-bVvudAqK-cal_XOwLSQNazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010858995</pqid></control><display><type>article</type><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</creator><creatorcontrib>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</creatorcontrib><description>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO 2 , CH 4 and CO, can be controlled via a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/C7GC02523H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Carbon sources ; Chemical vapor deposition ; Gases ; Graphene ; Green chemistry ; Heat treatment ; Landfills ; Monolayers ; Nanoparticles ; Nanorods ; Nanotechnology ; Nanowires ; Nickel oxides ; Polymers ; Reagents ; Regulated flow ; Reproducibility ; Rubber ; Silicon carbide ; Substrates ; Sustainability ; Tires ; Waste disposal sites ; Waste materials ; Waste treatment ; Waste utilization</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (23), p.5599-5607</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</citedby><cites>FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</cites><orcidid>0000-0002-7497-9499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>You, Y.</creatorcontrib><creatorcontrib>Mayyas, M.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Mansuri, I.</creatorcontrib><creatorcontrib>Gaikwad, V.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Sahajwalla, V.</creatorcontrib><creatorcontrib>Joshi, R. K.</creatorcontrib><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO 2 , CH 4 and CO, can be controlled via a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</description><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Chemical vapor deposition</subject><subject>Gases</subject><subject>Graphene</subject><subject>Green chemistry</subject><subject>Heat treatment</subject><subject>Landfills</subject><subject>Monolayers</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel oxides</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Regulated flow</subject><subject>Reproducibility</subject><subject>Rubber</subject><subject>Silicon carbide</subject><subject>Substrates</subject><subject>Sustainability</subject><subject>Tires</subject><subject>Waste disposal sites</subject><subject>Waste materials</subject><subject>Waste treatment</subject><subject>Waste utilization</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqVw4RdY4oYIeP2IkyMKJUUq9MDjajmxQ1I1cbBTqv57AkVwmh1pdlfzIXQO5BoIS28ymWeECsrmB2gCPGZRSiU5_JtjeoxOQlgRAiBjPkGPuXfbocauwk_NEne6c96ZcIWfm-zHbRtvA9adwa3r3FrvrMfvXve17Sz-bDTWOHu7w60damdO0VGl18Ge_eoUvd7PXrJ5tFjmD9ntIippGg9RAZwZWVSCWCOgpJXmjHOZQAGMFAm1NklTgCIBFpeGlGMjKXhlrOFGxGXKpuhif7f37mNjw6BWbuO78aWiBEgixn0xpi73qdK7ELytVO-bVvudAqK-cal_XOwLSQNazg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>You, Y.</creator><creator>Mayyas, M.</creator><creator>Xu, S.</creator><creator>Mansuri, I.</creator><creator>Gaikwad, V.</creator><creator>Munroe, P.</creator><creator>Sahajwalla, V.</creator><creator>Joshi, R. K.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7497-9499</orcidid></search><sort><creationdate>2017</creationdate><title>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</title><author>You, Y. ; Mayyas, M. ; Xu, S. ; Mansuri, I. ; Gaikwad, V. ; Munroe, P. ; Sahajwalla, V. ; Joshi, R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-b143d7bf50ed51c2fa4344781b130b82ee89911b8136cd0c025754fded4d56c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Chemical vapor deposition</topic><topic>Gases</topic><topic>Graphene</topic><topic>Green chemistry</topic><topic>Heat treatment</topic><topic>Landfills</topic><topic>Monolayers</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel oxides</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Regulated flow</topic><topic>Reproducibility</topic><topic>Rubber</topic><topic>Silicon carbide</topic><topic>Substrates</topic><topic>Sustainability</topic><topic>Tires</topic><topic>Waste disposal sites</topic><topic>Waste materials</topic><topic>Waste treatment</topic><topic>Waste utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Y.</creatorcontrib><creatorcontrib>Mayyas, M.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Mansuri, I.</creatorcontrib><creatorcontrib>Gaikwad, V.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Sahajwalla, V.</creatorcontrib><creatorcontrib>Joshi, R. K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Y.</au><au>Mayyas, M.</au><au>Xu, S.</au><au>Mansuri, I.</au><au>Gaikwad, V.</au><au>Munroe, P.</au><au>Sahajwalla, V.</au><au>Joshi, R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>23</issue><spage>5599</spage><epage>5607</epage><pages>5599-5607</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Green approaches for producing high purity advanced materials have always been a challenging task. Conventional methods for converting waste materials into char by heat treatment can have limitations in making defect free and pure materials for practical applications. Herein, we report a Green-Chemical Vapor Deposition (G-CVD) method to transform waste into functional materials in various forms by condensation of gases generated from waste on a chosen substrate. The flow of gases, mainly CO 2 , CH 4 and CO, can be controlled via a regulated flow of a carrier gas and by controlling the temperature, gases can react/recombine on the substrate forming a crystalline lattice of semiconducting materials. Such a versatile green method can be sustainable and at the same time help in reducing the burden of landfill waste. We present how an appropriate control of the gas mixture resulting from the heat-treatment of waste rubber tyres and plastics leads to the growth of various types of functional materials on substrates. The growth mechanism of materials on substrates in this method is similar to the conventional CVD method. However, the utilization of waste to generate these gases adds the green and sustainable feature to this method and its high degree of reproducibility offers practical applicability. Once established for NiO nanorods, we tested the versatility of this technique to grow SiC nanowires, SiC nanoparticles and monolayer graphene. This highly reproducible G-CVD method of making advanced materials solely involves waste materials as the solid carbon source at atmospheric pressure without any other synthetic reagents.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7GC02523H</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7497-9499</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (23), p.5599-5607
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2010858995
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbon dioxide
Carbon sources
Chemical vapor deposition
Gases
Graphene
Green chemistry
Heat treatment
Landfills
Monolayers
Nanoparticles
Nanorods
Nanotechnology
Nanowires
Nickel oxides
Polymers
Reagents
Regulated flow
Reproducibility
Rubber
Silicon carbide
Substrates
Sustainability
Tires
Waste disposal sites
Waste materials
Waste treatment
Waste utilization
title Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20NiO%20nanorods,%20SiC%20nanowires%20and%20monolayer%20graphene%20via%20a%20CVD%20method&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=You,%20Y.&rft.date=2017&rft.volume=19&rft.issue=23&rft.spage=5599&rft.epage=5607&rft.pages=5599-5607&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/C7GC02523H&rft_dat=%3Cproquest_cross%3E2010858995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010858995&rft_id=info:pmid/&rfr_iscdi=true