Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production

Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2018, Vol.8 (1), p.367-375
Hauptverfasser: Zeng, Feng, Broicher, Cornelia, Palkovits, Stefan, Simeonov, Kalin, Palkovits, Regina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1
container_start_page 367
container_title Catalysis science & technology
container_volume 8
creator Zeng, Feng
Broicher, Cornelia
Palkovits, Stefan
Simeonov, Kalin
Palkovits, Regina
description Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of these three factors may hamper the hydrogen evolution activity, so synergy between active sites and electric conductivity is of great importance. Here, we report a scalable wet chemistry method coupled with controllable calcination and the incorporation of carbon nanotubes. In this way, molybdenum sulfides showing optimum synergy between tailored and abundant active sites and high electric conductivity become accessible. Major factors governing the intrinsic catalytic activity could be identified. The optimized molybdenum sulfide based catalyst obtained by this method shows higher activity than sole molybdenum sulfide or molybdenum sulfide modified by either calcination or CNT addition. A low overpotential of 154 mV at a current density of 10 mA cm −2 , a low Tafel slope of 31 mV per decade and very good stability were achieved. This versatile approach paves the way for the systematic optimization of various 2D materials utilizing the synergy between active site design and enhanced electric conductivity. Synergy between active sites and electric conductivity tailored by controllable calcination and carbon nanotube addition for efficient electrochemical hydrogen production.
doi_str_mv 10.1039/c7cy02001e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010854889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010854889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-df7c8f87820f988cc5d2bd9398141cd816fae53c6abf8b2246d5003a6e731e243</originalsourceid><addsrcrecordid>eNpFkctLw0AQxhdRsGgv3oUFb0J0H3lsjlLqAwoe1IOnkMzOtluSbN1NlFz8200f1LnMwPzm--AbQq44u-NM5veQwcAEYxxPyESwOI7iLOWnxzmR52QawpqNFeecKTEhv29Di3450Aq7H8SWltDZb6TBdhho2WqKNULnLVBwre63W9sN1BnauHqoNLZ9Q0NfG6uRGucpGmPBYtsdLh2ssLFQ1nQ1aO-Wo8fGu52Say_JmSnrgNNDvyAfj_P32XO0eH16mT0sIpBcdZE2GSijMiWYyZUCSLSodC5zxWMOWvHUlJhISMvKqEqIONUJY7JMMZMcRSwvyM1ed7T-6jF0xdr1vh0tC8HGJJJYqXykbvcUeBeCR1NsvG1KPxScFduIi1k2-9xFPB_h6z3sAxy5_xfIPzyaezo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010854889</pqid></control><display><type>article</type><title>Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zeng, Feng ; Broicher, Cornelia ; Palkovits, Stefan ; Simeonov, Kalin ; Palkovits, Regina</creator><creatorcontrib>Zeng, Feng ; Broicher, Cornelia ; Palkovits, Stefan ; Simeonov, Kalin ; Palkovits, Regina</creatorcontrib><description>Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of these three factors may hamper the hydrogen evolution activity, so synergy between active sites and electric conductivity is of great importance. Here, we report a scalable wet chemistry method coupled with controllable calcination and the incorporation of carbon nanotubes. In this way, molybdenum sulfides showing optimum synergy between tailored and abundant active sites and high electric conductivity become accessible. Major factors governing the intrinsic catalytic activity could be identified. The optimized molybdenum sulfide based catalyst obtained by this method shows higher activity than sole molybdenum sulfide or molybdenum sulfide modified by either calcination or CNT addition. A low overpotential of 154 mV at a current density of 10 mA cm −2 , a low Tafel slope of 31 mV per decade and very good stability were achieved. This versatile approach paves the way for the systematic optimization of various 2D materials utilizing the synergy between active site design and enhanced electric conductivity. Synergy between active sites and electric conductivity tailored by controllable calcination and carbon nanotube addition for efficient electrochemical hydrogen production.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c7cy02001e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nanotubes ; Catalysis ; Catalytic activity ; Dispersion ; Electrical resistivity ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Molybdenum ; Molybdenum sulfides ; Roasting ; Slope stability</subject><ispartof>Catalysis science &amp; technology, 2018, Vol.8 (1), p.367-375</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-df7c8f87820f988cc5d2bd9398141cd816fae53c6abf8b2246d5003a6e731e243</citedby><cites>FETCH-LOGICAL-c318t-df7c8f87820f988cc5d2bd9398141cd816fae53c6abf8b2246d5003a6e731e243</cites><orcidid>0000-0002-4970-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Zeng, Feng</creatorcontrib><creatorcontrib>Broicher, Cornelia</creatorcontrib><creatorcontrib>Palkovits, Stefan</creatorcontrib><creatorcontrib>Simeonov, Kalin</creatorcontrib><creatorcontrib>Palkovits, Regina</creatorcontrib><title>Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production</title><title>Catalysis science &amp; technology</title><description>Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of these three factors may hamper the hydrogen evolution activity, so synergy between active sites and electric conductivity is of great importance. Here, we report a scalable wet chemistry method coupled with controllable calcination and the incorporation of carbon nanotubes. In this way, molybdenum sulfides showing optimum synergy between tailored and abundant active sites and high electric conductivity become accessible. Major factors governing the intrinsic catalytic activity could be identified. The optimized molybdenum sulfide based catalyst obtained by this method shows higher activity than sole molybdenum sulfide or molybdenum sulfide modified by either calcination or CNT addition. A low overpotential of 154 mV at a current density of 10 mA cm −2 , a low Tafel slope of 31 mV per decade and very good stability were achieved. This versatile approach paves the way for the systematic optimization of various 2D materials utilizing the synergy between active site design and enhanced electric conductivity. Synergy between active sites and electric conductivity tailored by controllable calcination and carbon nanotube addition for efficient electrochemical hydrogen production.</description><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Dispersion</subject><subject>Electrical resistivity</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Molybdenum</subject><subject>Molybdenum sulfides</subject><subject>Roasting</subject><subject>Slope stability</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctLw0AQxhdRsGgv3oUFb0J0H3lsjlLqAwoe1IOnkMzOtluSbN1NlFz8200f1LnMwPzm--AbQq44u-NM5veQwcAEYxxPyESwOI7iLOWnxzmR52QawpqNFeecKTEhv29Di3450Aq7H8SWltDZb6TBdhho2WqKNULnLVBwre63W9sN1BnauHqoNLZ9Q0NfG6uRGucpGmPBYtsdLh2ssLFQ1nQ1aO-Wo8fGu52Say_JmSnrgNNDvyAfj_P32XO0eH16mT0sIpBcdZE2GSijMiWYyZUCSLSodC5zxWMOWvHUlJhISMvKqEqIONUJY7JMMZMcRSwvyM1ed7T-6jF0xdr1vh0tC8HGJJJYqXykbvcUeBeCR1NsvG1KPxScFduIi1k2-9xFPB_h6z3sAxy5_xfIPzyaezo</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zeng, Feng</creator><creator>Broicher, Cornelia</creator><creator>Palkovits, Stefan</creator><creator>Simeonov, Kalin</creator><creator>Palkovits, Regina</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4970-2957</orcidid></search><sort><creationdate>2018</creationdate><title>Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production</title><author>Zeng, Feng ; Broicher, Cornelia ; Palkovits, Stefan ; Simeonov, Kalin ; Palkovits, Regina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-df7c8f87820f988cc5d2bd9398141cd816fae53c6abf8b2246d5003a6e731e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Dispersion</topic><topic>Electrical resistivity</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Molybdenum</topic><topic>Molybdenum sulfides</topic><topic>Roasting</topic><topic>Slope stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Feng</creatorcontrib><creatorcontrib>Broicher, Cornelia</creatorcontrib><creatorcontrib>Palkovits, Stefan</creatorcontrib><creatorcontrib>Simeonov, Kalin</creatorcontrib><creatorcontrib>Palkovits, Regina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Feng</au><au>Broicher, Cornelia</au><au>Palkovits, Stefan</au><au>Simeonov, Kalin</au><au>Palkovits, Regina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2018</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>367</spage><epage>375</epage><pages>367-375</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of these three factors may hamper the hydrogen evolution activity, so synergy between active sites and electric conductivity is of great importance. Here, we report a scalable wet chemistry method coupled with controllable calcination and the incorporation of carbon nanotubes. In this way, molybdenum sulfides showing optimum synergy between tailored and abundant active sites and high electric conductivity become accessible. Major factors governing the intrinsic catalytic activity could be identified. The optimized molybdenum sulfide based catalyst obtained by this method shows higher activity than sole molybdenum sulfide or molybdenum sulfide modified by either calcination or CNT addition. A low overpotential of 154 mV at a current density of 10 mA cm −2 , a low Tafel slope of 31 mV per decade and very good stability were achieved. This versatile approach paves the way for the systematic optimization of various 2D materials utilizing the synergy between active site design and enhanced electric conductivity. Synergy between active sites and electric conductivity tailored by controllable calcination and carbon nanotube addition for efficient electrochemical hydrogen production.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7cy02001e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4970-2957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2018, Vol.8 (1), p.367-375
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2010854889
source Royal Society Of Chemistry Journals 2008-
subjects Carbon nanotubes
Catalysis
Catalytic activity
Dispersion
Electrical resistivity
Hydrogen
Hydrogen evolution
Hydrogen production
Molybdenum
Molybdenum sulfides
Roasting
Slope stability
title Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergy%20between%20active%20sites%20and%20electric%20conductivity%20of%20molybdenum%20sulfide%20for%20efficient%20electrochemical%20hydrogen%20production&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Zeng,%20Feng&rft.date=2018&rft.volume=8&rft.issue=1&rft.spage=367&rft.epage=375&rft.pages=367-375&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c7cy02001e&rft_dat=%3Cproquest_cross%3E2010854889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010854889&rft_id=info:pmid/&rfr_iscdi=true