Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems

•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is rev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2018-02, Vol.54, p.803-816
Hauptverfasser: Xiao, Yuzhu, Tang, Sufang, Sun, Zhongkui, Song, Xueli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue
container_start_page 803
container_title Applied Mathematical Modelling
container_volume 54
creator Xiao, Yuzhu
Tang, Sufang
Sun, Zhongkui
Song, Xueli
description •The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed. In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.
doi_str_mv 10.1016/j.apm.2017.09.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010775946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X17305887</els_id><sourcerecordid>2010775946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AG8Bz61J27QbPMniP1jQg4K3kE0na2qb1CS7uvvpzdI9eBIGZgbe783wkuSS4IxgUl23mRj6LMekzjDLcEGPkgkucJ0yXL4f_5lPkzPvW4wxjdsk2b1Yr4PeAHK2A2QV6tdd0EOnpQjaGmSs9oC0QSIEoY02KyRtP3QQAPmtkR_OGr0btbE64VZwUPwgA-Hbuk-_9222RvTRtYuYD9D78-REic7DxaFPk7f7u9f5Y7p4fnia3y5SWeQ0pLmSdYVB0RoEaWaNoqVaEiHETIlKKbnMmSiK5awUijDMoBA0L1kjgVUUoFLFNLkafQdnv9bgA2_t2pl4kse8cF1TVlZRRUaVdNZ7B4oPTvfCbTnBfB8xb3mMeI_UHDMeI47MzchAfH-jwXEvNRgJjXYgA2-s_of-Bb8_iQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010775946</pqid></control><display><type>article</type><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EBSCOhost Education Source</source><source>Business Source Complete</source><source>EZB Electronic Journals Library</source><creator>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</creator><creatorcontrib>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</creatorcontrib><description>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed. In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2017.09.035</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Chaos ; Computer simulation ; Differential equations ; Dynamical network ; Dynamical systems ; Eigenvalues ; Lorenz system ; Networks ; Noise ; Noise-induced synchronization ; Stability analysis ; Stochastic models ; Studies ; Synchronism</subject><ispartof>Applied Mathematical Modelling, 2018-02, Vol.54, p.803-816</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</citedby><cites>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</cites><orcidid>0000-0002-0664-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2017.09.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Tang, Sufang</creatorcontrib><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><title>Applied Mathematical Modelling</title><description>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed. In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</description><subject>Chaos</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Dynamical network</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Lorenz system</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise-induced synchronization</subject><subject>Stability analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Synchronism</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYsouK5-AG8Bz61J27QbPMniP1jQg4K3kE0na2qb1CS7uvvpzdI9eBIGZgbe783wkuSS4IxgUl23mRj6LMekzjDLcEGPkgkucJ0yXL4f_5lPkzPvW4wxjdsk2b1Yr4PeAHK2A2QV6tdd0EOnpQjaGmSs9oC0QSIEoY02KyRtP3QQAPmtkR_OGr0btbE64VZwUPwgA-Hbuk-_9222RvTRtYuYD9D78-REic7DxaFPk7f7u9f5Y7p4fnia3y5SWeQ0pLmSdYVB0RoEaWaNoqVaEiHETIlKKbnMmSiK5awUijDMoBA0L1kjgVUUoFLFNLkafQdnv9bgA2_t2pl4kse8cF1TVlZRRUaVdNZ7B4oPTvfCbTnBfB8xb3mMeI_UHDMeI47MzchAfH-jwXEvNRgJjXYgA2-s_of-Bb8_iQo</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Xiao, Yuzhu</creator><creator>Tang, Sufang</creator><creator>Sun, Zhongkui</creator><creator>Song, Xueli</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid></search><sort><creationdate>201802</creationdate><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><author>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chaos</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Dynamical network</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Lorenz system</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise-induced synchronization</topic><topic>Stability analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Tang, Sufang</creatorcontrib><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yuzhu</au><au>Tang, Sufang</au><au>Sun, Zhongkui</au><au>Song, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-02</date><risdate>2018</risdate><volume>54</volume><spage>803</spage><epage>816</epage><pages>803-816</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed. In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2017.09.035</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2018-02, Vol.54, p.803-816
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2010775946
source Elsevier ScienceDirect Journals Complete; EBSCOhost Education Source; Business Source Complete; EZB Electronic Journals Library
subjects Chaos
Computer simulation
Differential equations
Dynamical network
Dynamical systems
Eigenvalues
Lorenz system
Networks
Noise
Noise-induced synchronization
Stability analysis
Stochastic models
Studies
Synchronism
title Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20role%20of%20multiplication%20noise%20in%20attaining%20complete%20synchronization%20on%20large%20complex%20networks%20of%20dynamical%20systems&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Xiao,%20Yuzhu&rft.date=2018-02&rft.volume=54&rft.spage=803&rft.epage=816&rft.pages=803-816&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2017.09.035&rft_dat=%3Cproquest_cross%3E2010775946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010775946&rft_id=info:pmid/&rft_els_id=S0307904X17305887&rfr_iscdi=true