Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems
•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is rev...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2018-02, Vol.54, p.803-816 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816 |
---|---|
container_issue | |
container_start_page | 803 |
container_title | Applied Mathematical Modelling |
container_volume | 54 |
creator | Xiao, Yuzhu Tang, Sufang Sun, Zhongkui Song, Xueli |
description | •The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed.
In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples. |
doi_str_mv | 10.1016/j.apm.2017.09.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010775946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X17305887</els_id><sourcerecordid>2010775946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AG8Bz61J27QbPMniP1jQg4K3kE0na2qb1CS7uvvpzdI9eBIGZgbe783wkuSS4IxgUl23mRj6LMekzjDLcEGPkgkucJ0yXL4f_5lPkzPvW4wxjdsk2b1Yr4PeAHK2A2QV6tdd0EOnpQjaGmSs9oC0QSIEoY02KyRtP3QQAPmtkR_OGr0btbE64VZwUPwgA-Hbuk-_9222RvTRtYuYD9D78-REic7DxaFPk7f7u9f5Y7p4fnia3y5SWeQ0pLmSdYVB0RoEaWaNoqVaEiHETIlKKbnMmSiK5awUijDMoBA0L1kjgVUUoFLFNLkafQdnv9bgA2_t2pl4kse8cF1TVlZRRUaVdNZ7B4oPTvfCbTnBfB8xb3mMeI_UHDMeI47MzchAfH-jwXEvNRgJjXYgA2-s_of-Bb8_iQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010775946</pqid></control><display><type>article</type><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EBSCOhost Education Source</source><source>Business Source Complete</source><source>EZB Electronic Journals Library</source><creator>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</creator><creatorcontrib>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</creatorcontrib><description>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed.
In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2017.09.035</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Chaos ; Computer simulation ; Differential equations ; Dynamical network ; Dynamical systems ; Eigenvalues ; Lorenz system ; Networks ; Noise ; Noise-induced synchronization ; Stability analysis ; Stochastic models ; Studies ; Synchronism</subject><ispartof>Applied Mathematical Modelling, 2018-02, Vol.54, p.803-816</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</citedby><cites>FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</cites><orcidid>0000-0002-0664-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2017.09.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Tang, Sufang</creatorcontrib><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><title>Applied Mathematical Modelling</title><description>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed.
In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</description><subject>Chaos</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Dynamical network</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Lorenz system</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise-induced synchronization</subject><subject>Stability analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Synchronism</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYsouK5-AG8Bz61J27QbPMniP1jQg4K3kE0na2qb1CS7uvvpzdI9eBIGZgbe783wkuSS4IxgUl23mRj6LMekzjDLcEGPkgkucJ0yXL4f_5lPkzPvW4wxjdsk2b1Yr4PeAHK2A2QV6tdd0EOnpQjaGmSs9oC0QSIEoY02KyRtP3QQAPmtkR_OGr0btbE64VZwUPwgA-Hbuk-_9222RvTRtYuYD9D78-REic7DxaFPk7f7u9f5Y7p4fnia3y5SWeQ0pLmSdYVB0RoEaWaNoqVaEiHETIlKKbnMmSiK5awUijDMoBA0L1kjgVUUoFLFNLkafQdnv9bgA2_t2pl4kse8cF1TVlZRRUaVdNZ7B4oPTvfCbTnBfB8xb3mMeI_UHDMeI47MzchAfH-jwXEvNRgJjXYgA2-s_of-Bb8_iQo</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Xiao, Yuzhu</creator><creator>Tang, Sufang</creator><creator>Sun, Zhongkui</creator><creator>Song, Xueli</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid></search><sort><creationdate>201802</creationdate><title>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</title><author>Xiao, Yuzhu ; Tang, Sufang ; Sun, Zhongkui ; Song, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2fc760ef57ea1d8df54fb1aaa8fa6ffcb29a33b84af1909e3a5249dce965ee6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chaos</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Dynamical network</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Lorenz system</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise-induced synchronization</topic><topic>Stability analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Tang, Sufang</creatorcontrib><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yuzhu</au><au>Tang, Sufang</au><au>Sun, Zhongkui</au><au>Song, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-02</date><risdate>2018</risdate><volume>54</volume><spage>803</spage><epage>816</epage><pages>803-816</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•The dynamical networks with complex structure are investigated.•The condition of synchronization is acquired by theoretical analyses.•Theoretical result shows noise plays a positive role in attaining synchronization.•The key role of eigenvalues of coupling matrix in attaining synchronization is revealed.
In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2017.09.035</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2018-02, Vol.54, p.803-816 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2010775946 |
source | Elsevier ScienceDirect Journals Complete; EBSCOhost Education Source; Business Source Complete; EZB Electronic Journals Library |
subjects | Chaos Computer simulation Differential equations Dynamical network Dynamical systems Eigenvalues Lorenz system Networks Noise Noise-induced synchronization Stability analysis Stochastic models Studies Synchronism |
title | Positive role of multiplication noise in attaining complete synchronization on large complex networks of dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20role%20of%20multiplication%20noise%20in%20attaining%20complete%20synchronization%20on%20large%20complex%20networks%20of%20dynamical%20systems&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Xiao,%20Yuzhu&rft.date=2018-02&rft.volume=54&rft.spage=803&rft.epage=816&rft.pages=803-816&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2017.09.035&rft_dat=%3Cproquest_cross%3E2010775946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010775946&rft_id=info:pmid/&rft_els_id=S0307904X17305887&rfr_iscdi=true |