Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer

•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2018-01, Vol.269, p.382-387
Hauptverfasser: Bayram, Abdullah, Serhatlioglu, Murat, Ortac, Bulend, Demic, Serafettin, Elbuken, Caglar, Sen, Mustafa, Solmaz, Mehmet Ertugrul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue
container_start_page 382
container_title Sensors and actuators. A. Physical.
container_volume 269
creator Bayram, Abdullah
Serhatlioglu, Murat
Ortac, Bulend
Demic, Serafettin
Elbuken, Caglar
Sen, Mustafa
Solmaz, Mehmet Ertugrul
description •A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate. In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.
doi_str_mv 10.1016/j.sna.2017.11.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010774697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092442471731258X</els_id><sourcerecordid>2010774697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA866ZTXbTxZPUr4LgRW9CiMmkZtluapIq_nsj9expLs8z885LyDmwGhh0l0OdJl03DGQNULO2OyAzWEhecdb1h2TG-kZUohHymJykNDDGOJdyRl5XU8Z11NmHiQZH16NOiW68iWHrt5gzJvrl8zvVlN_QbfQFt1SPfj1hpC7EPevGnbfeUDeGL2q-c9hgxnhKjpweE579zTl5ubt9Xj5Uj0_3q-X1Y2UEdLkClLZfgAPRdtr0PW9EI1vD3zR20rYCOwPWgdVoLfRGvrV8YRvnRNNa2S8Mn5OL_d5tDB87TFkNYRenclKVRpiUoutloWBPlbwpRXSqvLPR8VsBU78lqkGVEn8VqQBUKbE4V3sHS_xPj1El43EyaH1Ek5UN_h_7B3n7ezk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010774697</pqid></control><display><type>article</type><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</creator><creatorcontrib>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</creatorcontrib><description>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate. In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2017.11.056</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>3-D printers ; 3D printing ; Fiber lasers ; Flow cytometry ; Fluid mechanics ; Glass ; Hydrodynamic focusing ; Micropipette ; Optical communication ; Optofluidics ; Three dimensional printing</subject><ispartof>Sensors and actuators. A. Physical., 2018-01, Vol.269, p.382-387</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</citedby><cites>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2017.11.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Bayram, Abdullah</creatorcontrib><creatorcontrib>Serhatlioglu, Murat</creatorcontrib><creatorcontrib>Ortac, Bulend</creatorcontrib><creatorcontrib>Demic, Serafettin</creatorcontrib><creatorcontrib>Elbuken, Caglar</creatorcontrib><creatorcontrib>Sen, Mustafa</creatorcontrib><creatorcontrib>Solmaz, Mehmet Ertugrul</creatorcontrib><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><title>Sensors and actuators. A. Physical.</title><description>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate. In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Fiber lasers</subject><subject>Flow cytometry</subject><subject>Fluid mechanics</subject><subject>Glass</subject><subject>Hydrodynamic focusing</subject><subject>Micropipette</subject><subject>Optical communication</subject><subject>Optofluidics</subject><subject>Three dimensional printing</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA866ZTXbTxZPUr4LgRW9CiMmkZtluapIq_nsj9expLs8z885LyDmwGhh0l0OdJl03DGQNULO2OyAzWEhecdb1h2TG-kZUohHymJykNDDGOJdyRl5XU8Z11NmHiQZH16NOiW68iWHrt5gzJvrl8zvVlN_QbfQFt1SPfj1hpC7EPevGnbfeUDeGL2q-c9hgxnhKjpweE579zTl5ubt9Xj5Uj0_3q-X1Y2UEdLkClLZfgAPRdtr0PW9EI1vD3zR20rYCOwPWgdVoLfRGvrV8YRvnRNNa2S8Mn5OL_d5tDB87TFkNYRenclKVRpiUoutloWBPlbwpRXSqvLPR8VsBU78lqkGVEn8VqQBUKbE4V3sHS_xPj1El43EyaH1Ek5UN_h_7B3n7ezk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bayram, Abdullah</creator><creator>Serhatlioglu, Murat</creator><creator>Ortac, Bulend</creator><creator>Demic, Serafettin</creator><creator>Elbuken, Caglar</creator><creator>Sen, Mustafa</creator><creator>Solmaz, Mehmet Ertugrul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><author>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Fiber lasers</topic><topic>Flow cytometry</topic><topic>Fluid mechanics</topic><topic>Glass</topic><topic>Hydrodynamic focusing</topic><topic>Micropipette</topic><topic>Optical communication</topic><topic>Optofluidics</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, Abdullah</creatorcontrib><creatorcontrib>Serhatlioglu, Murat</creatorcontrib><creatorcontrib>Ortac, Bulend</creatorcontrib><creatorcontrib>Demic, Serafettin</creatorcontrib><creatorcontrib>Elbuken, Caglar</creatorcontrib><creatorcontrib>Sen, Mustafa</creatorcontrib><creatorcontrib>Solmaz, Mehmet Ertugrul</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, Abdullah</au><au>Serhatlioglu, Murat</au><au>Ortac, Bulend</au><au>Demic, Serafettin</au><au>Elbuken, Caglar</au><au>Sen, Mustafa</au><au>Solmaz, Mehmet Ertugrul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>269</volume><spage>382</spage><epage>387</epage><pages>382-387</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate. In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2017.11.056</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2018-01, Vol.269, p.382-387
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2010774697
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects 3-D printers
3D printing
Fiber lasers
Flow cytometry
Fluid mechanics
Glass
Hydrodynamic focusing
Micropipette
Optical communication
Optofluidics
Three dimensional printing
title Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20glass%20micropipettes%20with%20a%203D%20printed%20aligner%20for%20microfluidic%20flow%20cytometer&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Bayram,%20Abdullah&rft.date=2018-01-01&rft.volume=269&rft.spage=382&rft.epage=387&rft.pages=382-387&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2017.11.056&rft_dat=%3Cproquest_cross%3E2010774697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010774697&rft_id=info:pmid/&rft_els_id=S092442471731258X&rfr_iscdi=true