Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer
•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•T...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2018-01, Vol.269, p.382-387 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | |
container_start_page | 382 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 269 |
creator | Bayram, Abdullah Serhatlioglu, Murat Ortac, Bulend Demic, Serafettin Elbuken, Caglar Sen, Mustafa Solmaz, Mehmet Ertugrul |
description | •A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate.
In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration. |
doi_str_mv | 10.1016/j.sna.2017.11.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010774697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092442471731258X</els_id><sourcerecordid>2010774697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA866ZTXbTxZPUr4LgRW9CiMmkZtluapIq_nsj9expLs8z885LyDmwGhh0l0OdJl03DGQNULO2OyAzWEhecdb1h2TG-kZUohHymJykNDDGOJdyRl5XU8Z11NmHiQZH16NOiW68iWHrt5gzJvrl8zvVlN_QbfQFt1SPfj1hpC7EPevGnbfeUDeGL2q-c9hgxnhKjpweE579zTl5ubt9Xj5Uj0_3q-X1Y2UEdLkClLZfgAPRdtr0PW9EI1vD3zR20rYCOwPWgdVoLfRGvrV8YRvnRNNa2S8Mn5OL_d5tDB87TFkNYRenclKVRpiUoutloWBPlbwpRXSqvLPR8VsBU78lqkGVEn8VqQBUKbE4V3sHS_xPj1El43EyaH1Ek5UN_h_7B3n7ezk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010774697</pqid></control><display><type>article</type><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</creator><creatorcontrib>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</creatorcontrib><description>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate.
In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2017.11.056</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>3-D printers ; 3D printing ; Fiber lasers ; Flow cytometry ; Fluid mechanics ; Glass ; Hydrodynamic focusing ; Micropipette ; Optical communication ; Optofluidics ; Three dimensional printing</subject><ispartof>Sensors and actuators. A. Physical., 2018-01, Vol.269, p.382-387</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</citedby><cites>FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2017.11.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Bayram, Abdullah</creatorcontrib><creatorcontrib>Serhatlioglu, Murat</creatorcontrib><creatorcontrib>Ortac, Bulend</creatorcontrib><creatorcontrib>Demic, Serafettin</creatorcontrib><creatorcontrib>Elbuken, Caglar</creatorcontrib><creatorcontrib>Sen, Mustafa</creatorcontrib><creatorcontrib>Solmaz, Mehmet Ertugrul</creatorcontrib><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><title>Sensors and actuators. A. Physical.</title><description>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate.
In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Fiber lasers</subject><subject>Flow cytometry</subject><subject>Fluid mechanics</subject><subject>Glass</subject><subject>Hydrodynamic focusing</subject><subject>Micropipette</subject><subject>Optical communication</subject><subject>Optofluidics</subject><subject>Three dimensional printing</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA866ZTXbTxZPUr4LgRW9CiMmkZtluapIq_nsj9expLs8z885LyDmwGhh0l0OdJl03DGQNULO2OyAzWEhecdb1h2TG-kZUohHymJykNDDGOJdyRl5XU8Z11NmHiQZH16NOiW68iWHrt5gzJvrl8zvVlN_QbfQFt1SPfj1hpC7EPevGnbfeUDeGL2q-c9hgxnhKjpweE579zTl5ubt9Xj5Uj0_3q-X1Y2UEdLkClLZfgAPRdtr0PW9EI1vD3zR20rYCOwPWgdVoLfRGvrV8YRvnRNNa2S8Mn5OL_d5tDB87TFkNYRenclKVRpiUoutloWBPlbwpRXSqvLPR8VsBU78lqkGVEn8VqQBUKbE4V3sHS_xPj1El43EyaH1Ek5UN_h_7B3n7ezk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bayram, Abdullah</creator><creator>Serhatlioglu, Murat</creator><creator>Ortac, Bulend</creator><creator>Demic, Serafettin</creator><creator>Elbuken, Caglar</creator><creator>Sen, Mustafa</creator><creator>Solmaz, Mehmet Ertugrul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</title><author>Bayram, Abdullah ; Serhatlioglu, Murat ; Ortac, Bulend ; Demic, Serafettin ; Elbuken, Caglar ; Sen, Mustafa ; Solmaz, Mehmet Ertugrul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1e7d981f1456ac99324275c3bae67d54e6c1df1daedd19c7b538d2ff425d798c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Fiber lasers</topic><topic>Flow cytometry</topic><topic>Fluid mechanics</topic><topic>Glass</topic><topic>Hydrodynamic focusing</topic><topic>Micropipette</topic><topic>Optical communication</topic><topic>Optofluidics</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, Abdullah</creatorcontrib><creatorcontrib>Serhatlioglu, Murat</creatorcontrib><creatorcontrib>Ortac, Bulend</creatorcontrib><creatorcontrib>Demic, Serafettin</creatorcontrib><creatorcontrib>Elbuken, Caglar</creatorcontrib><creatorcontrib>Sen, Mustafa</creatorcontrib><creatorcontrib>Solmaz, Mehmet Ertugrul</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, Abdullah</au><au>Serhatlioglu, Murat</au><au>Ortac, Bulend</au><au>Demic, Serafettin</au><au>Elbuken, Caglar</au><au>Sen, Mustafa</au><au>Solmaz, Mehmet Ertugrul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>269</volume><spage>382</spage><epage>387</epage><pages>382-387</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•A facile strategy for fabrication of a microflow cytometer was reported.•Two existing technologies, micropipettes and 3D printing, were used in the same optofluidic platform.•Scattered optical signals obtained from microparticles of uniform size prove that particles were hydrodynamically focused.•The presented device is ultra-low cost, and easy to fabricate and operate.
In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2017.11.056</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2018-01, Vol.269, p.382-387 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2010774697 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | 3-D printers 3D printing Fiber lasers Flow cytometry Fluid mechanics Glass Hydrodynamic focusing Micropipette Optical communication Optofluidics Three dimensional printing |
title | Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20glass%20micropipettes%20with%20a%203D%20printed%20aligner%20for%20microfluidic%20flow%20cytometer&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Bayram,%20Abdullah&rft.date=2018-01-01&rft.volume=269&rft.spage=382&rft.epage=387&rft.pages=382-387&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2017.11.056&rft_dat=%3Cproquest_cross%3E2010774697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010774697&rft_id=info:pmid/&rft_els_id=S092442471731258X&rfr_iscdi=true |