The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis
Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plan...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2018-05, Vol.812 (1), p.147-155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Hydrobiologia |
container_volume | 812 |
creator | Zhang, Peiyu Blonk, Brigitte A. van den Berg, Reinier F. Bakker, Elisabeth S. |
description | Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plant-eating) is more prevalent toward low latitudes in ectotherms such as fish and aquatic invertebrates, and this may be temperature driven. We used pond snails (
Lymnaea stagnalis
L.) as a model aquatic ectotherm species and tested their consumption of both animal prey (
Gammarus pulex
L.) and plant material (
Potamogeton lucens
L.) at three different temperatures (15, 20, and 25°C). Higher temperatures led to higher consumption rates by the omnivore on both plant food and animal prey when fed separately. When the food was offered simultaneously, the pond snails consistently preferred animal prey over plant material at all tested temperatures. However, the omnivore did consume plant material even though they had enough animal prey available to them. Based on our experiments, we conclude that with increasing temperatures,
L. stagnalis
will only increase their consumption rates but not change food preference. Further studies are needed to test the generality of our findings across aquatic species to predict the effect of warming on aquatic plant consumption. |
doi_str_mv | 10.1007/s10750-016-2891-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2010731302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530007668</galeid><sourcerecordid>A530007668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-e1187e27680c6367f452844e2fd778eec254e307415fb193d6617ce5aa28e0773</originalsourceid><addsrcrecordid>eNp1kU1LAzEURYMoWD9-gLuAKxdT8zKTSbosxY9CQdC6cRPS6Us70pnUJCP235thBHEhWYQ8zgmXdwm5AjYGxuRtACYFyxiUGVcTyOQRGYGQeSYA5DEZMQYqUyDUKTkL4Z0lZ8LZiLwtt0jRWqwidZZGbPboTew8UtfSLfpV_en8ga4ONCbSNW3_dl2gyXBp5BsaWlPv6OLQtAYNDdFsWrOrwwU5sWYX8PLnPiev93fL2WO2eHqYz6aLrComKmYIoCRyWSpWlXkpbSG4Kgrkdi2lQqy4KDBnsgBhVzDJ12UJskJhDFfIpMzPyfXw7967jw5D1O-u8ylC0JylteSQM56o8UBtzA513VoXvanSWWNTV65FW6f5VOT9aspSJeHmj5CYiF9xY7oQ9Pzl-S8LA1t5F4JHq_e-bow_aGC670cP_ejUj-770X1sPjghse0G_W_s_6VvhPyROA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010731302</pqid></control><display><type>article</type><title>The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis</title><source>SpringerLink Journals</source><creator>Zhang, Peiyu ; Blonk, Brigitte A. ; van den Berg, Reinier F. ; Bakker, Elisabeth S.</creator><creatorcontrib>Zhang, Peiyu ; Blonk, Brigitte A. ; van den Berg, Reinier F. ; Bakker, Elisabeth S.</creatorcontrib><description>Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plant-eating) is more prevalent toward low latitudes in ectotherms such as fish and aquatic invertebrates, and this may be temperature driven. We used pond snails (
Lymnaea stagnalis
L.) as a model aquatic ectotherm species and tested their consumption of both animal prey (
Gammarus pulex
L.) and plant material (
Potamogeton lucens
L.) at three different temperatures (15, 20, and 25°C). Higher temperatures led to higher consumption rates by the omnivore on both plant food and animal prey when fed separately. When the food was offered simultaneously, the pond snails consistently preferred animal prey over plant material at all tested temperatures. However, the omnivore did consume plant material even though they had enough animal prey available to them. Based on our experiments, we conclude that with increasing temperatures,
L. stagnalis
will only increase their consumption rates but not change food preference. Further studies are needed to test the generality of our findings across aquatic species to predict the effect of warming on aquatic plant consumption.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-016-2891-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Animal experimentation ; Aquatic ecosystems ; Aquatic invertebrates ; Aquatic organisms ; Aquatic plants ; Biomedical and Life Sciences ; Climate change ; Consumption ; Ecology ; Ecosystems ; Feeding preferences ; Fertilizer industry ; Fertilizers ; Fish ; Food ; Food preferences ; Foods ; Freshwater & Marine Ecology ; Freshwater plants ; Global warming ; Herbivores ; Herbivory ; High temperature ; Interactions ; Invertebrates ; Life Sciences ; Lymnaea stagnalis ; Mollusks ; Omnivores ; Plants in Aquatic Systems ; Ponds ; Prey ; Snails ; Temperature ; Temperature effects ; Trophic relationships ; Zoology</subject><ispartof>Hydrobiologia, 2018-05, Vol.812 (1), p.147-155</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Hydrobiologia is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-e1187e27680c6367f452844e2fd778eec254e307415fb193d6617ce5aa28e0773</citedby><cites>FETCH-LOGICAL-c498t-e1187e27680c6367f452844e2fd778eec254e307415fb193d6617ce5aa28e0773</cites><orcidid>0000-0002-9551-3882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-016-2891-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-016-2891-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Peiyu</creatorcontrib><creatorcontrib>Blonk, Brigitte A.</creatorcontrib><creatorcontrib>van den Berg, Reinier F.</creatorcontrib><creatorcontrib>Bakker, Elisabeth S.</creatorcontrib><title>The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plant-eating) is more prevalent toward low latitudes in ectotherms such as fish and aquatic invertebrates, and this may be temperature driven. We used pond snails (
Lymnaea stagnalis
L.) as a model aquatic ectotherm species and tested their consumption of both animal prey (
Gammarus pulex
L.) and plant material (
Potamogeton lucens
L.) at three different temperatures (15, 20, and 25°C). Higher temperatures led to higher consumption rates by the omnivore on both plant food and animal prey when fed separately. When the food was offered simultaneously, the pond snails consistently preferred animal prey over plant material at all tested temperatures. However, the omnivore did consume plant material even though they had enough animal prey available to them. Based on our experiments, we conclude that with increasing temperatures,
L. stagnalis
will only increase their consumption rates but not change food preference. Further studies are needed to test the generality of our findings across aquatic species to predict the effect of warming on aquatic plant consumption.</description><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Aquatic ecosystems</subject><subject>Aquatic invertebrates</subject><subject>Aquatic organisms</subject><subject>Aquatic plants</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Consumption</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Feeding preferences</subject><subject>Fertilizer industry</subject><subject>Fertilizers</subject><subject>Fish</subject><subject>Food</subject><subject>Food preferences</subject><subject>Foods</subject><subject>Freshwater & Marine Ecology</subject><subject>Freshwater plants</subject><subject>Global warming</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>High temperature</subject><subject>Interactions</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Lymnaea stagnalis</subject><subject>Mollusks</subject><subject>Omnivores</subject><subject>Plants in Aquatic Systems</subject><subject>Ponds</subject><subject>Prey</subject><subject>Snails</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Trophic relationships</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LAzEURYMoWD9-gLuAKxdT8zKTSbosxY9CQdC6cRPS6Us70pnUJCP235thBHEhWYQ8zgmXdwm5AjYGxuRtACYFyxiUGVcTyOQRGYGQeSYA5DEZMQYqUyDUKTkL4Z0lZ8LZiLwtt0jRWqwidZZGbPboTew8UtfSLfpV_en8ga4ONCbSNW3_dl2gyXBp5BsaWlPv6OLQtAYNDdFsWrOrwwU5sWYX8PLnPiev93fL2WO2eHqYz6aLrComKmYIoCRyWSpWlXkpbSG4Kgrkdi2lQqy4KDBnsgBhVzDJ12UJskJhDFfIpMzPyfXw7967jw5D1O-u8ylC0JylteSQM56o8UBtzA513VoXvanSWWNTV65FW6f5VOT9aspSJeHmj5CYiF9xY7oQ9Pzl-S8LA1t5F4JHq_e-bow_aGC670cP_ejUj-770X1sPjghse0G_W_s_6VvhPyROA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Zhang, Peiyu</creator><creator>Blonk, Brigitte A.</creator><creator>van den Berg, Reinier F.</creator><creator>Bakker, Elisabeth S.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9551-3882</orcidid></search><sort><creationdate>20180501</creationdate><title>The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis</title><author>Zhang, Peiyu ; Blonk, Brigitte A. ; van den Berg, Reinier F. ; Bakker, Elisabeth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-e1187e27680c6367f452844e2fd778eec254e307415fb193d6617ce5aa28e0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Aquatic ecosystems</topic><topic>Aquatic invertebrates</topic><topic>Aquatic organisms</topic><topic>Aquatic plants</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Consumption</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Feeding preferences</topic><topic>Fertilizer industry</topic><topic>Fertilizers</topic><topic>Fish</topic><topic>Food</topic><topic>Food preferences</topic><topic>Foods</topic><topic>Freshwater & Marine Ecology</topic><topic>Freshwater plants</topic><topic>Global warming</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>High temperature</topic><topic>Interactions</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Lymnaea stagnalis</topic><topic>Mollusks</topic><topic>Omnivores</topic><topic>Plants in Aquatic Systems</topic><topic>Ponds</topic><topic>Prey</topic><topic>Snails</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Trophic relationships</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peiyu</creatorcontrib><creatorcontrib>Blonk, Brigitte A.</creatorcontrib><creatorcontrib>van den Berg, Reinier F.</creatorcontrib><creatorcontrib>Bakker, Elisabeth S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peiyu</au><au>Blonk, Brigitte A.</au><au>van den Berg, Reinier F.</au><au>Bakker, Elisabeth S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>812</volume><issue>1</issue><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plant-eating) is more prevalent toward low latitudes in ectotherms such as fish and aquatic invertebrates, and this may be temperature driven. We used pond snails (
Lymnaea stagnalis
L.) as a model aquatic ectotherm species and tested their consumption of both animal prey (
Gammarus pulex
L.) and plant material (
Potamogeton lucens
L.) at three different temperatures (15, 20, and 25°C). Higher temperatures led to higher consumption rates by the omnivore on both plant food and animal prey when fed separately. When the food was offered simultaneously, the pond snails consistently preferred animal prey over plant material at all tested temperatures. However, the omnivore did consume plant material even though they had enough animal prey available to them. Based on our experiments, we conclude that with increasing temperatures,
L. stagnalis
will only increase their consumption rates but not change food preference. Further studies are needed to test the generality of our findings across aquatic species to predict the effect of warming on aquatic plant consumption.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-016-2891-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9551-3882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2018-05, Vol.812 (1), p.147-155 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_2010731302 |
source | SpringerLink Journals |
subjects | Analysis Animal experimentation Aquatic ecosystems Aquatic invertebrates Aquatic organisms Aquatic plants Biomedical and Life Sciences Climate change Consumption Ecology Ecosystems Feeding preferences Fertilizer industry Fertilizers Fish Food Food preferences Foods Freshwater & Marine Ecology Freshwater plants Global warming Herbivores Herbivory High temperature Interactions Invertebrates Life Sciences Lymnaea stagnalis Mollusks Omnivores Plants in Aquatic Systems Ponds Prey Snails Temperature Temperature effects Trophic relationships Zoology |
title | The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20temperature%20on%20herbivory%20by%20the%20omnivorous%20ectotherm%20snail%20Lymnaea%20stagnalis&rft.jtitle=Hydrobiologia&rft.au=Zhang,%20Peiyu&rft.date=2018-05-01&rft.volume=812&rft.issue=1&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-016-2891-7&rft_dat=%3Cgale_proqu%3EA530007668%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010731302&rft_id=info:pmid/&rft_galeid=A530007668&rfr_iscdi=true |