Some remarks on the deterministic particle swarm optimization algorithm

In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-03, Vol.41 (5), p.1870-1875
Hauptverfasser: Wang, Jinxun, Xu, Qiwen, Li, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1875
container_issue 5
container_start_page 1870
container_title Mathematical methods in the applied sciences
container_volume 41
creator Wang, Jinxun
Xu, Qiwen
Li, Qin
description In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.
doi_str_mv 10.1002/mma.4716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010662372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010662372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlDsndpKxqqAgtWIAZstNLtQlboKdqipPj6GsTP_y3Z3uZ-waYYIA4s45M8lyVCdshFCWCWa5OmUjwBySTGB2zi5C2ABAgShGbP7SOeKenPEfgXdbPqyJ1zSQd3Zrw2Ar3hsfoyUe9sY73vWDdfbLDDZq07533g5rd8nOGtMGuvrLMXt7uH-dPSaL5_nTbLpIKlGmKpErlZeFRCnJgJCyqJq6UvlKStXIOiNFQoo0z3IiJJQFFCIzaVETppiaAtIxuznu7X33uaMw6E2389t4UgtAUCpOi6huj6ryXQieGt17G188aAT9U5OONemfmiJNjnRvWzr86_RyOf3133mEZ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010662372</pqid></control><display><type>article</type><title>Some remarks on the deterministic particle swarm optimization algorithm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</creator><creatorcontrib>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</creatorcontrib><description>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4716</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Convergence ; deterministic PSO ; Optimization algorithms ; Particle swarm optimization ; spectral radius ; Stagnation</subject><ispartof>Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1870-1875</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</citedby><cites>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</cites><orcidid>0000-0001-6334-4992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Wang, Jinxun</creatorcontrib><creatorcontrib>Xu, Qiwen</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><title>Some remarks on the deterministic particle swarm optimization algorithm</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>deterministic PSO</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>spectral radius</subject><subject>Stagnation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlDsndpKxqqAgtWIAZstNLtQlboKdqipPj6GsTP_y3Z3uZ-waYYIA4s45M8lyVCdshFCWCWa5OmUjwBySTGB2zi5C2ABAgShGbP7SOeKenPEfgXdbPqyJ1zSQd3Zrw2Ar3hsfoyUe9sY73vWDdfbLDDZq07533g5rd8nOGtMGuvrLMXt7uH-dPSaL5_nTbLpIKlGmKpErlZeFRCnJgJCyqJq6UvlKStXIOiNFQoo0z3IiJJQFFCIzaVETppiaAtIxuznu7X33uaMw6E2389t4UgtAUCpOi6huj6ryXQieGt17G188aAT9U5OONemfmiJNjnRvWzr86_RyOf3133mEZ_w</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Wang, Jinxun</creator><creator>Xu, Qiwen</creator><creator>Li, Qin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6334-4992</orcidid></search><sort><creationdate>20180330</creationdate><title>Some remarks on the deterministic particle swarm optimization algorithm</title><author>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>deterministic PSO</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>spectral radius</topic><topic>Stagnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinxun</creatorcontrib><creatorcontrib>Xu, Qiwen</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinxun</au><au>Xu, Qiwen</au><au>Li, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the deterministic particle swarm optimization algorithm</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-03-30</date><risdate>2018</risdate><volume>41</volume><issue>5</issue><spage>1870</spage><epage>1875</epage><pages>1870-1875</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4716</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6334-4992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1870-1875
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2010662372
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Convergence
deterministic PSO
Optimization algorithms
Particle swarm optimization
spectral radius
Stagnation
title Some remarks on the deterministic particle swarm optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20deterministic%20particle%20swarm%20optimization%20algorithm&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wang,%20Jinxun&rft.date=2018-03-30&rft.volume=41&rft.issue=5&rft.spage=1870&rft.epage=1875&rft.pages=1870-1875&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4716&rft_dat=%3Cproquest_cross%3E2010662372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010662372&rft_id=info:pmid/&rfr_iscdi=true