Some remarks on the deterministic particle swarm optimization algorithm
In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a c...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-03, Vol.41 (5), p.1870-1875 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1875 |
---|---|
container_issue | 5 |
container_start_page | 1870 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Wang, Jinxun Xu, Qiwen Li, Qin |
description | In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case. |
doi_str_mv | 10.1002/mma.4716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010662372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010662372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlDsndpKxqqAgtWIAZstNLtQlboKdqipPj6GsTP_y3Z3uZ-waYYIA4s45M8lyVCdshFCWCWa5OmUjwBySTGB2zi5C2ABAgShGbP7SOeKenPEfgXdbPqyJ1zSQd3Zrw2Ar3hsfoyUe9sY73vWDdfbLDDZq07533g5rd8nOGtMGuvrLMXt7uH-dPSaL5_nTbLpIKlGmKpErlZeFRCnJgJCyqJq6UvlKStXIOiNFQoo0z3IiJJQFFCIzaVETppiaAtIxuznu7X33uaMw6E2389t4UgtAUCpOi6huj6ryXQieGt17G188aAT9U5OONemfmiJNjnRvWzr86_RyOf3133mEZ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010662372</pqid></control><display><type>article</type><title>Some remarks on the deterministic particle swarm optimization algorithm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</creator><creatorcontrib>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</creatorcontrib><description>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4716</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Convergence ; deterministic PSO ; Optimization algorithms ; Particle swarm optimization ; spectral radius ; Stagnation</subject><ispartof>Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1870-1875</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</citedby><cites>FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</cites><orcidid>0000-0001-6334-4992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Wang, Jinxun</creatorcontrib><creatorcontrib>Xu, Qiwen</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><title>Some remarks on the deterministic particle swarm optimization algorithm</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>deterministic PSO</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>spectral radius</subject><subject>Stagnation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlDsndpKxqqAgtWIAZstNLtQlboKdqipPj6GsTP_y3Z3uZ-waYYIA4s45M8lyVCdshFCWCWa5OmUjwBySTGB2zi5C2ABAgShGbP7SOeKenPEfgXdbPqyJ1zSQd3Zrw2Ar3hsfoyUe9sY73vWDdfbLDDZq07533g5rd8nOGtMGuvrLMXt7uH-dPSaL5_nTbLpIKlGmKpErlZeFRCnJgJCyqJq6UvlKStXIOiNFQoo0z3IiJJQFFCIzaVETppiaAtIxuznu7X33uaMw6E2389t4UgtAUCpOi6huj6ryXQieGt17G188aAT9U5OONemfmiJNjnRvWzr86_RyOf3133mEZ_w</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Wang, Jinxun</creator><creator>Xu, Qiwen</creator><creator>Li, Qin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6334-4992</orcidid></search><sort><creationdate>20180330</creationdate><title>Some remarks on the deterministic particle swarm optimization algorithm</title><author>Wang, Jinxun ; Xu, Qiwen ; Li, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-5b67985155ea02558cfdc67b556f5d4e6e2523747ee1e1580824a38de1313a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>deterministic PSO</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>spectral radius</topic><topic>Stagnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinxun</creatorcontrib><creatorcontrib>Xu, Qiwen</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinxun</au><au>Xu, Qiwen</au><au>Li, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the deterministic particle swarm optimization algorithm</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-03-30</date><risdate>2018</risdate><volume>41</volume><issue>5</issue><spage>1870</spage><epage>1875</epage><pages>1870-1875</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we give a simple proof for the convergence of the deterministic particle swarm optimization algorithm under the weak chaotic assumption and remark that the weak chaotic assumption does not relax the stagnation assumption in essence. Under the spectral radius assumption, we propose a convergence criterion for the deterministic particle swarm optimization algorithm in terms of the personal best and neighborhood best position of the particle that incorporates the stagnation assumption or the weak chaotic assumption as a special case.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4716</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6334-4992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1870-1875 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2010662372 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Convergence deterministic PSO Optimization algorithms Particle swarm optimization spectral radius Stagnation |
title | Some remarks on the deterministic particle swarm optimization algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20deterministic%20particle%20swarm%20optimization%20algorithm&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wang,%20Jinxun&rft.date=2018-03-30&rft.volume=41&rft.issue=5&rft.spage=1870&rft.epage=1875&rft.pages=1870-1875&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4716&rft_dat=%3Cproquest_cross%3E2010662372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010662372&rft_id=info:pmid/&rfr_iscdi=true |