Pedal curves of frontals in the Euclidean plane
In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-03, Vol.41 (5), p.1988-1997 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1997 |
---|---|
container_issue | 5 |
container_start_page | 1988 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Li, Yanlin Pei, Donghe |
description | In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane. |
doi_str_mv | 10.1002/mma.4724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010661988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010661988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</originalsourceid><addsrcrecordid>eNp10D1PwzAQgGELgUQpSPwESywsae8cx47HqiofUisYYLac-CJSpUmxE1D_PSllZbrhHt1JL2O3CDMEEPPdzs2kFvKMTRCMSVBqdc4mgBoSKVBesqsYtwCQI4oJm7-Sdw0vh_BFkXcVr0LX9q6JvG55_0F8NZRN7cm1fN-4lq7ZRTVu6eZvTtn7w-pt-ZSsXx6fl4t1UqaZkYnSoDOSykBRpQRCeV9SZWQhC2eM0EUmDaAigY68z7QptMopM86nJL0u0im7O93dh-5zoNjbbTeEdnxpBSAohSbPR3V_UmXoYgxU2X2ody4cLII95rBjDnvMMdLkRL_rhg7_OrvZLH79D5fnXuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010661988</pqid></control><display><type>article</type><title>Pedal curves of frontals in the Euclidean plane</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yanlin ; Pei, Donghe</creator><creatorcontrib>Li, Yanlin ; Pei, Donghe</creatorcontrib><description>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4724</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Curves ; Euclidean geometry ; frontal ; Legendre curve ; pedal curve ; singularities</subject><ispartof>Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1988-1997</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</citedby><cites>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</cites><orcidid>0000-0001-8412-7583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Pei, Donghe</creatorcontrib><title>Pedal curves of frontals in the Euclidean plane</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</description><subject>Curves</subject><subject>Euclidean geometry</subject><subject>frontal</subject><subject>Legendre curve</subject><subject>pedal curve</subject><subject>singularities</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQgGELgUQpSPwESywsae8cx47HqiofUisYYLac-CJSpUmxE1D_PSllZbrhHt1JL2O3CDMEEPPdzs2kFvKMTRCMSVBqdc4mgBoSKVBesqsYtwCQI4oJm7-Sdw0vh_BFkXcVr0LX9q6JvG55_0F8NZRN7cm1fN-4lq7ZRTVu6eZvTtn7w-pt-ZSsXx6fl4t1UqaZkYnSoDOSykBRpQRCeV9SZWQhC2eM0EUmDaAigY68z7QptMopM86nJL0u0im7O93dh-5zoNjbbTeEdnxpBSAohSbPR3V_UmXoYgxU2X2ody4cLII95rBjDnvMMdLkRL_rhg7_OrvZLH79D5fnXuE</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Li, Yanlin</creator><creator>Pei, Donghe</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8412-7583</orcidid></search><sort><creationdate>20180330</creationdate><title>Pedal curves of frontals in the Euclidean plane</title><author>Li, Yanlin ; Pei, Donghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Euclidean geometry</topic><topic>frontal</topic><topic>Legendre curve</topic><topic>pedal curve</topic><topic>singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Pei, Donghe</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanlin</au><au>Pei, Donghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedal curves of frontals in the Euclidean plane</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-03-30</date><risdate>2018</risdate><volume>41</volume><issue>5</issue><spage>1988</spage><epage>1997</epage><pages>1988-1997</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4724</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8412-7583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1988-1997 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2010661988 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Curves Euclidean geometry frontal Legendre curve pedal curve singularities |
title | Pedal curves of frontals in the Euclidean plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedal%20curves%20of%20frontals%20in%20the%20Euclidean%20plane&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Li,%20Yanlin&rft.date=2018-03-30&rft.volume=41&rft.issue=5&rft.spage=1988&rft.epage=1997&rft.pages=1988-1997&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4724&rft_dat=%3Cproquest_cross%3E2010661988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010661988&rft_id=info:pmid/&rfr_iscdi=true |