Pedal curves of frontals in the Euclidean plane

In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-03, Vol.41 (5), p.1988-1997
Hauptverfasser: Li, Yanlin, Pei, Donghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1997
container_issue 5
container_start_page 1988
container_title Mathematical methods in the applied sciences
container_volume 41
creator Li, Yanlin
Pei, Donghe
description In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.
doi_str_mv 10.1002/mma.4724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010661988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010661988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</originalsourceid><addsrcrecordid>eNp10D1PwzAQgGELgUQpSPwESywsae8cx47HqiofUisYYLac-CJSpUmxE1D_PSllZbrhHt1JL2O3CDMEEPPdzs2kFvKMTRCMSVBqdc4mgBoSKVBesqsYtwCQI4oJm7-Sdw0vh_BFkXcVr0LX9q6JvG55_0F8NZRN7cm1fN-4lq7ZRTVu6eZvTtn7w-pt-ZSsXx6fl4t1UqaZkYnSoDOSykBRpQRCeV9SZWQhC2eM0EUmDaAigY68z7QptMopM86nJL0u0im7O93dh-5zoNjbbTeEdnxpBSAohSbPR3V_UmXoYgxU2X2ody4cLII95rBjDnvMMdLkRL_rhg7_OrvZLH79D5fnXuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010661988</pqid></control><display><type>article</type><title>Pedal curves of frontals in the Euclidean plane</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yanlin ; Pei, Donghe</creator><creatorcontrib>Li, Yanlin ; Pei, Donghe</creatorcontrib><description>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4724</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Curves ; Euclidean geometry ; frontal ; Legendre curve ; pedal curve ; singularities</subject><ispartof>Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1988-1997</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</citedby><cites>FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</cites><orcidid>0000-0001-8412-7583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Pei, Donghe</creatorcontrib><title>Pedal curves of frontals in the Euclidean plane</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</description><subject>Curves</subject><subject>Euclidean geometry</subject><subject>frontal</subject><subject>Legendre curve</subject><subject>pedal curve</subject><subject>singularities</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQgGELgUQpSPwESywsae8cx47HqiofUisYYLac-CJSpUmxE1D_PSllZbrhHt1JL2O3CDMEEPPdzs2kFvKMTRCMSVBqdc4mgBoSKVBesqsYtwCQI4oJm7-Sdw0vh_BFkXcVr0LX9q6JvG55_0F8NZRN7cm1fN-4lq7ZRTVu6eZvTtn7w-pt-ZSsXx6fl4t1UqaZkYnSoDOSykBRpQRCeV9SZWQhC2eM0EUmDaAigY68z7QptMopM86nJL0u0im7O93dh-5zoNjbbTeEdnxpBSAohSbPR3V_UmXoYgxU2X2ody4cLII95rBjDnvMMdLkRL_rhg7_OrvZLH79D5fnXuE</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Li, Yanlin</creator><creator>Pei, Donghe</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8412-7583</orcidid></search><sort><creationdate>20180330</creationdate><title>Pedal curves of frontals in the Euclidean plane</title><author>Li, Yanlin ; Pei, Donghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-67075e4690bf3e026ddcef94b4ba9927b549016e21aedd579b768e59ad3e4d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Euclidean geometry</topic><topic>frontal</topic><topic>Legendre curve</topic><topic>pedal curve</topic><topic>singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Pei, Donghe</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanlin</au><au>Pei, Donghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedal curves of frontals in the Euclidean plane</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-03-30</date><risdate>2018</risdate><volume>41</volume><issue>5</issue><spage>1988</spage><epage>1997</epage><pages>1988-1997</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we will give the definition of the pedal curves of frontals and investigate the geometric properties of these curves in the Euclidean plane. We obtain that pedal curves of frontals in the Euclidean plane are also frontals. We further discuss the connections between singular points of the pedal curves and inflexion points of frontals in the Euclidean plane.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4724</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8412-7583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-03, Vol.41 (5), p.1988-1997
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2010661988
source Wiley Online Library Journals Frontfile Complete
subjects Curves
Euclidean geometry
frontal
Legendre curve
pedal curve
singularities
title Pedal curves of frontals in the Euclidean plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedal%20curves%20of%20frontals%20in%20the%20Euclidean%20plane&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Li,%20Yanlin&rft.date=2018-03-30&rft.volume=41&rft.issue=5&rft.spage=1988&rft.epage=1997&rft.pages=1988-1997&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4724&rft_dat=%3Cproquest_cross%3E2010661988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010661988&rft_id=info:pmid/&rfr_iscdi=true