Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach

Computationally efficient inverse dynamics is crucial to the real-time application of parallel robots. This paper provides a computationally more efficient solution to the inverse dynamics of a class of six-DOF parallel robots based on the dual quaternion approach under the principle of virtual powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2019-04, Vol.94 (1), p.101-113
Hauptverfasser: Yang, XiaoLong, Wu, HongTao, Li, Yao, Kang, ShengZheng, Chen, Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 101
container_title Journal of intelligent & robotic systems
container_volume 94
creator Yang, XiaoLong
Wu, HongTao
Li, Yao
Kang, ShengZheng
Chen, Bai
description Computationally efficient inverse dynamics is crucial to the real-time application of parallel robots. This paper provides a computationally more efficient solution to the inverse dynamics of a class of six-DOF parallel robots based on the dual quaternion approach under the principle of virtual power. A unit dual quaternion is selected as the generalized coordinates of the system. The equations of motion are then constructed by the principle of virtual power. The dual quaternion constraints are eliminated by the null space formulation to obtain the inverse dynamic solution. It is revealed that in the new solution, the Jacobian matrices and the orthogonal complement matrix are all linear with respect to the generalized coordinates. Additionally, the positions, velocities and accelerations of all bodies are quadratic with respect to the generalized coordinates, velocities and accelerations. Such succinct expressions render the new solution computationally more efficient. The execution time of the dual quaternion approach and the traditional one are compared under the same condition by two different six-DOF parallel robots: 6-U P S and 6- P US. The results show that the new solution can save the computational cost by 43.45% and 38.45% respectively for the two robots, illustrating the effectiveness of the proposed approach.
doi_str_mv 10.1007/s10846-018-0800-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2010617941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725981194</galeid><sourcerecordid>A725981194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-616f615fa65c5d9baa1830c69d2f38cb427981e18e6783cc29d96b71cc76d8ee3</originalsourceid><addsrcrecordid>eNp1kUlLBDEQhYMoOC4_wFvAc7Sql3TibZhxA8H9HDLpRHvo6YxJtzj_3owteJI6pAjvq1fFI-QE4QwBqvOIIArOAAUDAcBwh0ywrHIGBchdMgGZIYNM8n1yEOMSAKQo5YQsZ361HnrdN77Tbbuhl841prFdT2-7TxuipfNNp1eNidQ7qums1fGnfW6-2Pz-ij7okEDb0ie_8H28oPNBt_Rx0L0NXZpKp-t18Nq8H5E9p9toj3_fQ_J6dfkyu2F399e3s-kdM3lZ9owjdxxLp3lpyloutEaRg-GyzlwuzKLIKinQorC8ErkxmawlX1RoTMVrYW1-SE7Hucn2Y7CxV0s_hHRdVBkgcKxkgUl1NqredGtV0znfB21S1TYd6zvrmvQ_rbIyuaEsEoAjYIKPMVin1qFZ6bBRCGqbgRozUCkDtc1AbU2ykYlJ273Z8LfK_9A3LGmIzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010617941</pqid></control><display><type>article</type><title>Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, XiaoLong ; Wu, HongTao ; Li, Yao ; Kang, ShengZheng ; Chen, Bai</creator><creatorcontrib>Yang, XiaoLong ; Wu, HongTao ; Li, Yao ; Kang, ShengZheng ; Chen, Bai</creatorcontrib><description>Computationally efficient inverse dynamics is crucial to the real-time application of parallel robots. This paper provides a computationally more efficient solution to the inverse dynamics of a class of six-DOF parallel robots based on the dual quaternion approach under the principle of virtual power. A unit dual quaternion is selected as the generalized coordinates of the system. The equations of motion are then constructed by the principle of virtual power. The dual quaternion constraints are eliminated by the null space formulation to obtain the inverse dynamic solution. It is revealed that in the new solution, the Jacobian matrices and the orthogonal complement matrix are all linear with respect to the generalized coordinates. Additionally, the positions, velocities and accelerations of all bodies are quadratic with respect to the generalized coordinates, velocities and accelerations. Such succinct expressions render the new solution computationally more efficient. The execution time of the dual quaternion approach and the traditional one are compared under the same condition by two different six-DOF parallel robots: 6-U P S and 6- P US. The results show that the new solution can save the computational cost by 43.45% and 38.45% respectively for the two robots, illustrating the effectiveness of the proposed approach.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-018-0800-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computational efficiency ; Control ; Electrical Engineering ; Engineering ; Equations of motion ; Inverse dynamics ; Jacobi matrix method ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Mechatronics ; Parallel degrees of freedom ; Quaternions ; Robotics ; Robotics industry ; Robots</subject><ispartof>Journal of intelligent &amp; robotic systems, 2019-04, Vol.94 (1), p.101-113</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Intelligent &amp; Robotic Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-616f615fa65c5d9baa1830c69d2f38cb427981e18e6783cc29d96b71cc76d8ee3</citedby><cites>FETCH-LOGICAL-c355t-616f615fa65c5d9baa1830c69d2f38cb427981e18e6783cc29d96b71cc76d8ee3</cites><orcidid>0000-0001-6193-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-018-0800-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-018-0800-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, XiaoLong</creatorcontrib><creatorcontrib>Wu, HongTao</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kang, ShengZheng</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><title>Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Computationally efficient inverse dynamics is crucial to the real-time application of parallel robots. This paper provides a computationally more efficient solution to the inverse dynamics of a class of six-DOF parallel robots based on the dual quaternion approach under the principle of virtual power. A unit dual quaternion is selected as the generalized coordinates of the system. The equations of motion are then constructed by the principle of virtual power. The dual quaternion constraints are eliminated by the null space formulation to obtain the inverse dynamic solution. It is revealed that in the new solution, the Jacobian matrices and the orthogonal complement matrix are all linear with respect to the generalized coordinates. Additionally, the positions, velocities and accelerations of all bodies are quadratic with respect to the generalized coordinates, velocities and accelerations. Such succinct expressions render the new solution computationally more efficient. The execution time of the dual quaternion approach and the traditional one are compared under the same condition by two different six-DOF parallel robots: 6-U P S and 6- P US. The results show that the new solution can save the computational cost by 43.45% and 38.45% respectively for the two robots, illustrating the effectiveness of the proposed approach.</description><subject>Artificial Intelligence</subject><subject>Computational efficiency</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Inverse dynamics</subject><subject>Jacobi matrix method</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Parallel degrees of freedom</subject><subject>Quaternions</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUlLBDEQhYMoOC4_wFvAc7Sql3TibZhxA8H9HDLpRHvo6YxJtzj_3owteJI6pAjvq1fFI-QE4QwBqvOIIArOAAUDAcBwh0ywrHIGBchdMgGZIYNM8n1yEOMSAKQo5YQsZ361HnrdN77Tbbuhl841prFdT2-7TxuipfNNp1eNidQ7qums1fGnfW6-2Pz-ij7okEDb0ie_8H28oPNBt_Rx0L0NXZpKp-t18Nq8H5E9p9toj3_fQ_J6dfkyu2F399e3s-kdM3lZ9owjdxxLp3lpyloutEaRg-GyzlwuzKLIKinQorC8ErkxmawlX1RoTMVrYW1-SE7Hucn2Y7CxV0s_hHRdVBkgcKxkgUl1NqredGtV0znfB21S1TYd6zvrmvQ_rbIyuaEsEoAjYIKPMVin1qFZ6bBRCGqbgRozUCkDtc1AbU2ykYlJ273Z8LfK_9A3LGmIzQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Yang, XiaoLong</creator><creator>Wu, HongTao</creator><creator>Li, Yao</creator><creator>Kang, ShengZheng</creator><creator>Chen, Bai</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6193-2926</orcidid></search><sort><creationdate>20190401</creationdate><title>Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach</title><author>Yang, XiaoLong ; Wu, HongTao ; Li, Yao ; Kang, ShengZheng ; Chen, Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-616f615fa65c5d9baa1830c69d2f38cb427981e18e6783cc29d96b71cc76d8ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational efficiency</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Inverse dynamics</topic><topic>Jacobi matrix method</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Parallel degrees of freedom</topic><topic>Quaternions</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, XiaoLong</creatorcontrib><creatorcontrib>Wu, HongTao</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kang, ShengZheng</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, XiaoLong</au><au>Wu, HongTao</au><au>Li, Yao</au><au>Kang, ShengZheng</au><au>Chen, Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>94</volume><issue>1</issue><spage>101</spage><epage>113</epage><pages>101-113</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Computationally efficient inverse dynamics is crucial to the real-time application of parallel robots. This paper provides a computationally more efficient solution to the inverse dynamics of a class of six-DOF parallel robots based on the dual quaternion approach under the principle of virtual power. A unit dual quaternion is selected as the generalized coordinates of the system. The equations of motion are then constructed by the principle of virtual power. The dual quaternion constraints are eliminated by the null space formulation to obtain the inverse dynamic solution. It is revealed that in the new solution, the Jacobian matrices and the orthogonal complement matrix are all linear with respect to the generalized coordinates. Additionally, the positions, velocities and accelerations of all bodies are quadratic with respect to the generalized coordinates, velocities and accelerations. Such succinct expressions render the new solution computationally more efficient. The execution time of the dual quaternion approach and the traditional one are compared under the same condition by two different six-DOF parallel robots: 6-U P S and 6- P US. The results show that the new solution can save the computational cost by 43.45% and 38.45% respectively for the two robots, illustrating the effectiveness of the proposed approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-018-0800-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6193-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2019-04, Vol.94 (1), p.101-113
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2010617941
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational efficiency
Control
Electrical Engineering
Engineering
Equations of motion
Inverse dynamics
Jacobi matrix method
Mathematical analysis
Matrix methods
Mechanical Engineering
Mechatronics
Parallel degrees of freedom
Quaternions
Robotics
Robotics industry
Robots
title Computationally Efficient Inverse Dynamics of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20Efficient%20Inverse%20Dynamics%20of%20a%20Class%20of%20Six-DOF%20Parallel%20Robots:%20Dual%20Quaternion%20Approach&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Yang,%20XiaoLong&rft.date=2019-04-01&rft.volume=94&rft.issue=1&rft.spage=101&rft.epage=113&rft.pages=101-113&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-018-0800-1&rft_dat=%3Cgale_proqu%3EA725981194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010617941&rft_id=info:pmid/&rft_galeid=A725981194&rfr_iscdi=true