Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques

In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-03, Vol.14 (3), p.1099-1106
Hauptverfasser: Gandomi, Amir H., Kashani, Ali R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 3
container_start_page 1099
container_title IEEE transactions on industrial informatics
container_volume 14
creator Gandomi, Amir H.
Kashani, Ali R.
description In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.
doi_str_mv 10.1109/TII.2017.2776132
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2010545553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8116692</ieee_id><sourcerecordid>2010545553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKfvgi8BnzvvTZqmfZTitDAR3PZc2jTdMrpkJi1Df72dHT7dw-Gce-ALgnuEGSKkT6s8n1FAMaNCxMjoRTDBNMIQgMPloDnHkFFg18GN9zsAJoClk6DIrPGd62WnrSGZ9R1510bv9U_559iGLLdl29ojmdve1KO79tpsyKeSynRkeSzdnuSmU22rN8pIRVZKbo3-6pW_Da6asvXq7nynwXr-ssrewsXHa549L0JJU-zCKIGSYVqJmkslShRQlRLipq5qSmPESgCPE5AyiVnEWIQ0kUqmqWJNwptEsWnwOP49OHva7Yqd7Z0ZJouBCvCIc86GFIwp6az3TjXFwel96b4LhOKEsRgwngqiOGMcKg9jRSul_uMJYhynlP0CNGZusw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010545553</pqid></control><display><type>article</type><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Gandomi, Amir H. ; Kashani, Ali R.</creator><creatorcontrib>Gandomi, Amir H. ; Kashani, Ali R.</creatorcontrib><description>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2776132</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Bars ; Computer simulation ; Construction costs ; Construction industry ; global optimization ; Heuristic methods ; Informatics ; Krill ; Linear programming ; Machine learning ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Sensitivity analysis ; shallow footing ; Shallow foundations ; Swarm intelligence ; swarm intelligence techniques ; Whales</subject><ispartof>IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1099-1106</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</citedby><cites>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</cites><orcidid>0000-0002-2798-0104 ; 0000-0002-0950-8789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8116692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8116692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandomi, Amir H.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Bars</subject><subject>Computer simulation</subject><subject>Construction costs</subject><subject>Construction industry</subject><subject>global optimization</subject><subject>Heuristic methods</subject><subject>Informatics</subject><subject>Krill</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Sensitivity analysis</subject><subject>shallow footing</subject><subject>Shallow foundations</subject><subject>Swarm intelligence</subject><subject>swarm intelligence techniques</subject><subject>Whales</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOKfvgi8BnzvvTZqmfZTitDAR3PZc2jTdMrpkJi1Df72dHT7dw-Gce-ALgnuEGSKkT6s8n1FAMaNCxMjoRTDBNMIQgMPloDnHkFFg18GN9zsAJoClk6DIrPGd62WnrSGZ9R1510bv9U_559iGLLdl29ojmdve1KO79tpsyKeSynRkeSzdnuSmU22rN8pIRVZKbo3-6pW_Da6asvXq7nynwXr-ssrewsXHa549L0JJU-zCKIGSYVqJmkslShRQlRLipq5qSmPESgCPE5AyiVnEWIQ0kUqmqWJNwptEsWnwOP49OHva7Yqd7Z0ZJouBCvCIc86GFIwp6az3TjXFwel96b4LhOKEsRgwngqiOGMcKg9jRSul_uMJYhynlP0CNGZusw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Gandomi, Amir H.</creator><creator>Kashani, Ali R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2798-0104</orcidid><orcidid>https://orcid.org/0000-0002-0950-8789</orcidid></search><sort><creationdate>20180301</creationdate><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><author>Gandomi, Amir H. ; Kashani, Ali R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Bars</topic><topic>Computer simulation</topic><topic>Construction costs</topic><topic>Construction industry</topic><topic>global optimization</topic><topic>Heuristic methods</topic><topic>Informatics</topic><topic>Krill</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Sensitivity analysis</topic><topic>shallow footing</topic><topic>Shallow foundations</topic><topic>Swarm intelligence</topic><topic>swarm intelligence techniques</topic><topic>Whales</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandomi, Amir H.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandomi, Amir H.</au><au>Kashani, Ali R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>1099</spage><epage>1106</epage><pages>1099-1106</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2776132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2798-0104</orcidid><orcidid>https://orcid.org/0000-0002-0950-8789</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1099-1106
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2010545553
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Bars
Computer simulation
Construction costs
Construction industry
global optimization
Heuristic methods
Informatics
Krill
Linear programming
Machine learning
Optimization
Optimization algorithms
Particle swarm optimization
Sensitivity analysis
shallow footing
Shallow foundations
Swarm intelligence
swarm intelligence techniques
Whales
title Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20Cost%20Minimization%20of%20Shallow%20Foundation%20Using%20Recent%20Swarm%20Intelligence%20Techniques&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Gandomi,%20Amir%20H.&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=1099&rft.epage=1106&rft.pages=1099-1106&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2776132&rft_dat=%3Cproquest_RIE%3E2010545553%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010545553&rft_id=info:pmid/&rft_ieee_id=8116692&rfr_iscdi=true