Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques
In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learni...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-03, Vol.14 (3), p.1099-1106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 3 |
container_start_page | 1099 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Gandomi, Amir H. Kashani, Ali R. |
description | In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study. |
doi_str_mv | 10.1109/TII.2017.2776132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2010545553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8116692</ieee_id><sourcerecordid>2010545553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKfvgi8BnzvvTZqmfZTitDAR3PZc2jTdMrpkJi1Df72dHT7dw-Gce-ALgnuEGSKkT6s8n1FAMaNCxMjoRTDBNMIQgMPloDnHkFFg18GN9zsAJoClk6DIrPGd62WnrSGZ9R1510bv9U_559iGLLdl29ojmdve1KO79tpsyKeSynRkeSzdnuSmU22rN8pIRVZKbo3-6pW_Da6asvXq7nynwXr-ssrewsXHa549L0JJU-zCKIGSYVqJmkslShRQlRLipq5qSmPESgCPE5AyiVnEWIQ0kUqmqWJNwptEsWnwOP49OHva7Yqd7Z0ZJouBCvCIc86GFIwp6az3TjXFwel96b4LhOKEsRgwngqiOGMcKg9jRSul_uMJYhynlP0CNGZusw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010545553</pqid></control><display><type>article</type><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Gandomi, Amir H. ; Kashani, Ali R.</creator><creatorcontrib>Gandomi, Amir H. ; Kashani, Ali R.</creatorcontrib><description>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2776132</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Bars ; Computer simulation ; Construction costs ; Construction industry ; global optimization ; Heuristic methods ; Informatics ; Krill ; Linear programming ; Machine learning ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Sensitivity analysis ; shallow footing ; Shallow foundations ; Swarm intelligence ; swarm intelligence techniques ; Whales</subject><ispartof>IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1099-1106</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</citedby><cites>FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</cites><orcidid>0000-0002-2798-0104 ; 0000-0002-0950-8789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8116692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8116692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandomi, Amir H.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Bars</subject><subject>Computer simulation</subject><subject>Construction costs</subject><subject>Construction industry</subject><subject>global optimization</subject><subject>Heuristic methods</subject><subject>Informatics</subject><subject>Krill</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Sensitivity analysis</subject><subject>shallow footing</subject><subject>Shallow foundations</subject><subject>Swarm intelligence</subject><subject>swarm intelligence techniques</subject><subject>Whales</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOKfvgi8BnzvvTZqmfZTitDAR3PZc2jTdMrpkJi1Df72dHT7dw-Gce-ALgnuEGSKkT6s8n1FAMaNCxMjoRTDBNMIQgMPloDnHkFFg18GN9zsAJoClk6DIrPGd62WnrSGZ9R1510bv9U_559iGLLdl29ojmdve1KO79tpsyKeSynRkeSzdnuSmU22rN8pIRVZKbo3-6pW_Da6asvXq7nynwXr-ssrewsXHa549L0JJU-zCKIGSYVqJmkslShRQlRLipq5qSmPESgCPE5AyiVnEWIQ0kUqmqWJNwptEsWnwOP49OHva7Yqd7Z0ZJouBCvCIc86GFIwp6az3TjXFwel96b4LhOKEsRgwngqiOGMcKg9jRSul_uMJYhynlP0CNGZusw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Gandomi, Amir H.</creator><creator>Kashani, Ali R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2798-0104</orcidid><orcidid>https://orcid.org/0000-0002-0950-8789</orcidid></search><sort><creationdate>20180301</creationdate><title>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</title><author>Gandomi, Amir H. ; Kashani, Ali R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-480a319b7d5ce7a170bac06fdbd22611b705680cc8634334128cec99e3f85f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Bars</topic><topic>Computer simulation</topic><topic>Construction costs</topic><topic>Construction industry</topic><topic>global optimization</topic><topic>Heuristic methods</topic><topic>Informatics</topic><topic>Krill</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Sensitivity analysis</topic><topic>shallow footing</topic><topic>Shallow foundations</topic><topic>Swarm intelligence</topic><topic>swarm intelligence techniques</topic><topic>Whales</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandomi, Amir H.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandomi, Amir H.</au><au>Kashani, Ali R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>1099</spage><epage>1106</epage><pages>1099-1106</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this study, the performances of eight recent swarm intelligence techniques, accelerated particle swarm optimization (APSO), firefly algorithm, levy-flight krill herd, whale optimization algorithm (WOA), ant lion optimizer, grey wolf optimizer, moth-flame optimization algorithm and teaching-learning-based optimization algorithm (TLBO), are explored. Particle swarm optimization algorithm is also considered to benchmark the efficiencies. A final cost is considered as an objective function which deals with shallow footing optimization with two attitudes: routine optimization, and sensitivity analysis. Moreover, as a further study, the effect of the location of the column at the top of the foundation is examined by adding two spare design variables. To this end, three numerical case studies are simulated. Based on the final results TLBO showed an acceptable performance because of the lowest mean values and WOA demonstrated the weakest efficiency among the algorithms in this study.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2776132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2798-0104</orcidid><orcidid>https://orcid.org/0000-0002-0950-8789</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1099-1106 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2010545553 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Bars Computer simulation Construction costs Construction industry global optimization Heuristic methods Informatics Krill Linear programming Machine learning Optimization Optimization algorithms Particle swarm optimization Sensitivity analysis shallow footing Shallow foundations Swarm intelligence swarm intelligence techniques Whales |
title | Construction Cost Minimization of Shallow Foundation Using Recent Swarm Intelligence Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20Cost%20Minimization%20of%20Shallow%20Foundation%20Using%20Recent%20Swarm%20Intelligence%20Techniques&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Gandomi,%20Amir%20H.&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=1099&rft.epage=1106&rft.pages=1099-1106&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2776132&rft_dat=%3Cproquest_RIE%3E2010545553%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010545553&rft_id=info:pmid/&rft_ieee_id=8116692&rfr_iscdi=true |