Asymptotic and constructive methods for covering perfect hash families and covering arrays

Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2018-04, Vol.86 (4), p.907-937
Hauptverfasser: Colbourn, Charles J., Lanus, Erin, Sarkar, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 937
container_issue 4
container_start_page 907
container_title Designs, codes, and cryptography
container_volume 86
creator Colbourn, Charles J.
Lanus, Erin
Sarkar, Kaushik
description Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k ≤ 75 for strength seven, k ≤ 200 for strength six, k ≤ 600 for strength five, and k ≤ 2500 for strength four. When v > 3 , almost all known explicit constructions are improved upon. For strength t = 3 , restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t = 3 and k ≤ 10 , 000 again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.
doi_str_mv 10.1007/s10623-017-0369-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010095208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010095208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdD9yLMUvKHjRi5cQ82G3dDdrkpbuvzfLFjx5yoR5nxnmQeiWwj0FqB4ihZJxArQiwEtBjmdoRouKk6qoy3M0A8EKQoGxS3QV4xYAKAc2Q5_LOLR98qnRWHUGa9_FFPY6NQeLW5s23kTsfMiNgw1N9417G5zVCW9U3GCn2mbX2HhiTxEVghriNbpwahftzemdo4-nx_fVC1m_Pb-ulmuiF7xIpDa1YcJ9aSsW2ohccce5spQVpso3lZqVZvwKmwGuNHCmuOC8skwoI_gc3U1z--B_9jYmufX70OWVkkGWIwoGdU7RKaWDjzFYJ_vQtCoMkoIcFcpJocwK5ahQHjPDJib24102_E3-H_oF3ot17w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010095208</pqid></control><display><type>article</type><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</creator><creatorcontrib>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</creatorcontrib><description>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k ≤ 75 for strength seven, k ≤ 200 for strength six, k ≤ 600 for strength five, and k ≤ 2500 for strength four. When v &gt; 3 , almost all known explicit constructions are improved upon. For strength t = 3 , restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t = 3 and k ≤ 10 , 000 again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-017-0369-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrays ; Asymptotic methods ; Circuits ; Coding and Information Theory ; Columns (structural) ; Computer Science ; Construction methods ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Hash based algorithms ; Information and Communication ; Polynomials ; Probabilistic methods ; Resampling ; Strength ; Upper bounds</subject><ispartof>Designs, codes, and cryptography, 2018-04, Vol.86 (4), p.907-937</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</citedby><cites>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-017-0369-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-017-0369-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Lanus, Erin</creatorcontrib><creatorcontrib>Sarkar, Kaushik</creatorcontrib><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k ≤ 75 for strength seven, k ≤ 200 for strength six, k ≤ 600 for strength five, and k ≤ 2500 for strength four. When v &gt; 3 , almost all known explicit constructions are improved upon. For strength t = 3 , restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t = 3 and k ≤ 10 , 000 again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Columns (structural)</subject><subject>Computer Science</subject><subject>Construction methods</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Hash based algorithms</subject><subject>Information and Communication</subject><subject>Polynomials</subject><subject>Probabilistic methods</subject><subject>Resampling</subject><subject>Strength</subject><subject>Upper bounds</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdD9yLMUvKHjRi5cQ82G3dDdrkpbuvzfLFjx5yoR5nxnmQeiWwj0FqB4ihZJxArQiwEtBjmdoRouKk6qoy3M0A8EKQoGxS3QV4xYAKAc2Q5_LOLR98qnRWHUGa9_FFPY6NQeLW5s23kTsfMiNgw1N9417G5zVCW9U3GCn2mbX2HhiTxEVghriNbpwahftzemdo4-nx_fVC1m_Pb-ulmuiF7xIpDa1YcJ9aSsW2ohccce5spQVpso3lZqVZvwKmwGuNHCmuOC8skwoI_gc3U1z--B_9jYmufX70OWVkkGWIwoGdU7RKaWDjzFYJ_vQtCoMkoIcFcpJocwK5ahQHjPDJib24102_E3-H_oF3ot17w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Colbourn, Charles J.</creator><creator>Lanus, Erin</creator><creator>Sarkar, Kaushik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><author>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Columns (structural)</topic><topic>Computer Science</topic><topic>Construction methods</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Hash based algorithms</topic><topic>Information and Communication</topic><topic>Polynomials</topic><topic>Probabilistic methods</topic><topic>Resampling</topic><topic>Strength</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Lanus, Erin</creatorcontrib><creatorcontrib>Sarkar, Kaushik</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colbourn, Charles J.</au><au>Lanus, Erin</au><au>Sarkar, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic and constructive methods for covering perfect hash families and covering arrays</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>86</volume><issue>4</issue><spage>907</spage><epage>937</epage><pages>907-937</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k ≤ 75 for strength seven, k ≤ 200 for strength six, k ≤ 600 for strength five, and k ≤ 2500 for strength four. When v &gt; 3 , almost all known explicit constructions are improved upon. For strength t = 3 , restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t = 3 and k ≤ 10 , 000 again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-017-0369-x</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2018-04, Vol.86 (4), p.907-937
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2010095208
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Arrays
Asymptotic methods
Circuits
Coding and Information Theory
Columns (structural)
Computer Science
Construction methods
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Hash based algorithms
Information and Communication
Polynomials
Probabilistic methods
Resampling
Strength
Upper bounds
title Asymptotic and constructive methods for covering perfect hash families and covering arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20and%20constructive%20methods%20for%20covering%20perfect%20hash%20families%20and%20covering%20arrays&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Colbourn,%20Charles%20J.&rft.date=2018-04-01&rft.volume=86&rft.issue=4&rft.spage=907&rft.epage=937&rft.pages=907-937&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-017-0369-x&rft_dat=%3Cproquest_cross%3E2010095208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010095208&rft_id=info:pmid/&rfr_iscdi=true