Asymptotic and constructive methods for covering perfect hash families and covering arrays
Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t . One bound can be re...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2018-04, Vol.86 (4), p.907-937 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 937 |
---|---|
container_issue | 4 |
container_start_page | 907 |
container_title | Designs, codes, and cryptography |
container_volume | 86 |
creator | Colbourn, Charles J. Lanus, Erin Sarkar, Kaushik |
description | Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with
v
symbols,
k
columns, and strength
t
. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when
k
≤
75
for strength seven,
k
≤
200
for strength six,
k
≤
600
for strength five, and
k
≤
2500
for strength four. When
v
>
3
, almost all known explicit constructions are improved upon. For strength
t
=
3
, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for
t
=
3
and
k
≤
10
,
000
again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment. |
doi_str_mv | 10.1007/s10623-017-0369-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010095208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010095208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdD9yLMUvKHjRi5cQ82G3dDdrkpbuvzfLFjx5yoR5nxnmQeiWwj0FqB4ihZJxArQiwEtBjmdoRouKk6qoy3M0A8EKQoGxS3QV4xYAKAc2Q5_LOLR98qnRWHUGa9_FFPY6NQeLW5s23kTsfMiNgw1N9417G5zVCW9U3GCn2mbX2HhiTxEVghriNbpwahftzemdo4-nx_fVC1m_Pb-ulmuiF7xIpDa1YcJ9aSsW2ohccce5spQVpso3lZqVZvwKmwGuNHCmuOC8skwoI_gc3U1z--B_9jYmufX70OWVkkGWIwoGdU7RKaWDjzFYJ_vQtCoMkoIcFcpJocwK5ahQHjPDJib24102_E3-H_oF3ot17w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010095208</pqid></control><display><type>article</type><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</creator><creatorcontrib>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</creatorcontrib><description>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with
v
symbols,
k
columns, and strength
t
. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when
k
≤
75
for strength seven,
k
≤
200
for strength six,
k
≤
600
for strength five, and
k
≤
2500
for strength four. When
v
>
3
, almost all known explicit constructions are improved upon. For strength
t
=
3
, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for
t
=
3
and
k
≤
10
,
000
again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-017-0369-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrays ; Asymptotic methods ; Circuits ; Coding and Information Theory ; Columns (structural) ; Computer Science ; Construction methods ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Hash based algorithms ; Information and Communication ; Polynomials ; Probabilistic methods ; Resampling ; Strength ; Upper bounds</subject><ispartof>Designs, codes, and cryptography, 2018-04, Vol.86 (4), p.907-937</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</citedby><cites>FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-017-0369-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-017-0369-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Lanus, Erin</creatorcontrib><creatorcontrib>Sarkar, Kaushik</creatorcontrib><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with
v
symbols,
k
columns, and strength
t
. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when
k
≤
75
for strength seven,
k
≤
200
for strength six,
k
≤
600
for strength five, and
k
≤
2500
for strength four. When
v
>
3
, almost all known explicit constructions are improved upon. For strength
t
=
3
, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for
t
=
3
and
k
≤
10
,
000
again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Columns (structural)</subject><subject>Computer Science</subject><subject>Construction methods</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Hash based algorithms</subject><subject>Information and Communication</subject><subject>Polynomials</subject><subject>Probabilistic methods</subject><subject>Resampling</subject><subject>Strength</subject><subject>Upper bounds</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdD9yLMUvKHjRi5cQ82G3dDdrkpbuvzfLFjx5yoR5nxnmQeiWwj0FqB4ihZJxArQiwEtBjmdoRouKk6qoy3M0A8EKQoGxS3QV4xYAKAc2Q5_LOLR98qnRWHUGa9_FFPY6NQeLW5s23kTsfMiNgw1N9417G5zVCW9U3GCn2mbX2HhiTxEVghriNbpwahftzemdo4-nx_fVC1m_Pb-ulmuiF7xIpDa1YcJ9aSsW2ohccce5spQVpso3lZqVZvwKmwGuNHCmuOC8skwoI_gc3U1z--B_9jYmufX70OWVkkGWIwoGdU7RKaWDjzFYJ_vQtCoMkoIcFcpJocwK5ahQHjPDJib24102_E3-H_oF3ot17w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Colbourn, Charles J.</creator><creator>Lanus, Erin</creator><creator>Sarkar, Kaushik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Asymptotic and constructive methods for covering perfect hash families and covering arrays</title><author>Colbourn, Charles J. ; Lanus, Erin ; Sarkar, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-8d8d29fbce94cd99fb3f33ae125d76236c26dae129ec433ac032a39337e29ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Columns (structural)</topic><topic>Computer Science</topic><topic>Construction methods</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Hash based algorithms</topic><topic>Information and Communication</topic><topic>Polynomials</topic><topic>Probabilistic methods</topic><topic>Resampling</topic><topic>Strength</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Lanus, Erin</creatorcontrib><creatorcontrib>Sarkar, Kaushik</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colbourn, Charles J.</au><au>Lanus, Erin</au><au>Sarkar, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic and constructive methods for covering perfect hash families and covering arrays</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>86</volume><issue>4</issue><spage>907</spage><epage>937</epage><pages>907-937</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with
v
symbols,
k
columns, and strength
t
. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when
k
≤
75
for strength seven,
k
≤
200
for strength six,
k
≤
600
for strength five, and
k
≤
2500
for strength four. When
v
>
3
, almost all known explicit constructions are improved upon. For strength
t
=
3
, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for
t
=
3
and
k
≤
10
,
000
again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-017-0369-x</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2018-04, Vol.86 (4), p.907-937 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_2010095208 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Arrays Asymptotic methods Circuits Coding and Information Theory Columns (structural) Computer Science Construction methods Cryptology Data Structures and Information Theory Discrete Mathematics in Computer Science Hash based algorithms Information and Communication Polynomials Probabilistic methods Resampling Strength Upper bounds |
title | Asymptotic and constructive methods for covering perfect hash families and covering arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20and%20constructive%20methods%20for%20covering%20perfect%20hash%20families%20and%20covering%20arrays&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Colbourn,%20Charles%20J.&rft.date=2018-04-01&rft.volume=86&rft.issue=4&rft.spage=907&rft.epage=937&rft.pages=907-937&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-017-0369-x&rft_dat=%3Cproquest_cross%3E2010095208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010095208&rft_id=info:pmid/&rfr_iscdi=true |