Nanostructured semiconducting materials for efficient hydrogen generation

Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental chemistry letters 2018-09, Vol.16 (3), p.765-796
Hauptverfasser: Lakshmana Reddy, Nagappagari, Navakoteswara Rao, Vempuluru, Mamatha Kumari, Murkinati, Kakarla, Raghava Reddy, Ravi, Parnapalle, Sathish, Marappan, Karthik, Mani, Muthukonda Venkatakrishnan, Shankar, Inamuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 3
container_start_page 765
container_title Environmental chemistry letters
container_volume 16
creator Lakshmana Reddy, Nagappagari
Navakoteswara Rao, Vempuluru
Mamatha Kumari, Murkinati
Kakarla, Raghava Reddy
Ravi, Parnapalle
Sathish, Marappan
Karthik, Mani
Muthukonda Venkatakrishnan, Shankar
Inamuddin
description Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO 2 -based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO 2 nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h −1   g cat - 1 , whereas TiO 2 /Au nanocomposites display 1,60,000 µmol h −1   g cat - 1 . For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h −1   g cat - 1 and (b) CuO–Cr 2 O 3 as co-catalyst immobilized on TiO 2 system produces around 82,390 µmol h −1   g cat - 1 .
doi_str_mv 10.1007/s10311-018-0722-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009849128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009849128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZtE3Toyx-LCx60XNI87FmcZM1aQ_992ap6MnDMDPwvDPwEHKNcIsA7V1CqBBLQF5CS2k5nZAFMoSyYgxPf-emOicXKe0AKM3YgqxfpA9piKMaxmh0kczeqeB13p3fFns5mOjkZypsiIWx1iln_FB8TDqGrfFFLhPl4IK_JGc2g-bqpy_J--PD2-q53Lw-rVf3m1JVnA5lzZua6V420DWGdqzX0GKjqNSS2R40a1HpRkkOrObYUWq1rGiDnDPeWuDVktzMdw8xfI0mDWIXxujzS0EBOl53SI8UzpSKIaVorDhEt5dxEgjiaEzMxkQ2Jo7GxJQzdM6kzPqtiX-X_w99A7Kqbxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009849128</pqid></control><display><type>article</type><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><source>SpringerNature Journals</source><creator>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</creator><creatorcontrib>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</creatorcontrib><description>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO 2 -based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO 2 nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h −1   g cat - 1 , whereas TiO 2 /Au nanocomposites display 1,60,000 µmol h −1   g cat - 1 . For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h −1   g cat - 1 and (b) CuO–Cr 2 O 3 as co-catalyst immobilized on TiO 2 system produces around 82,390 µmol h −1   g cat - 1 .</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-018-0722-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Catalysis ; Catalysts ; Chemical synthesis ; Computing time ; Earth and Environmental Science ; Ecotoxicology ; Energy efficiency ; Environment ; Environmental Chemistry ; Geochemistry ; Gold ; Heavy metals ; Hydrogen ; Hydrogen production ; Light intensity ; Light sources ; Luminous intensity ; Metal oxide semiconductors ; Metal oxides ; Metals ; Nanocomposites ; Oxidation ; Photocatalysts ; Pollution ; Review ; Titanium dioxide</subject><ispartof>Environmental chemistry letters, 2018-09, Vol.16 (3), p.765-796</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Environmental Chemistry Letters is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</citedby><cites>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</cites><orcidid>0000-0003-0524-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10311-018-0722-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10311-018-0722-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Lakshmana Reddy, Nagappagari</creatorcontrib><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Mamatha Kumari, Murkinati</creatorcontrib><creatorcontrib>Kakarla, Raghava Reddy</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Muthukonda Venkatakrishnan, Shankar</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO 2 -based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO 2 nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h −1   g cat - 1 , whereas TiO 2 /Au nanocomposites display 1,60,000 µmol h −1   g cat - 1 . For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h −1   g cat - 1 and (b) CuO–Cr 2 O 3 as co-catalyst immobilized on TiO 2 system produces around 82,390 µmol h −1   g cat - 1 .</description><subject>Analytical Chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Computing time</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Energy efficiency</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Light intensity</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Photocatalysts</subject><subject>Pollution</subject><subject>Review</subject><subject>Titanium dioxide</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZtE3Toyx-LCx60XNI87FmcZM1aQ_992ap6MnDMDPwvDPwEHKNcIsA7V1CqBBLQF5CS2k5nZAFMoSyYgxPf-emOicXKe0AKM3YgqxfpA9piKMaxmh0kczeqeB13p3fFns5mOjkZypsiIWx1iln_FB8TDqGrfFFLhPl4IK_JGc2g-bqpy_J--PD2-q53Lw-rVf3m1JVnA5lzZua6V420DWGdqzX0GKjqNSS2R40a1HpRkkOrObYUWq1rGiDnDPeWuDVktzMdw8xfI0mDWIXxujzS0EBOl53SI8UzpSKIaVorDhEt5dxEgjiaEzMxkQ2Jo7GxJQzdM6kzPqtiX-X_w99A7Kqbxo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Lakshmana Reddy, Nagappagari</creator><creator>Navakoteswara Rao, Vempuluru</creator><creator>Mamatha Kumari, Murkinati</creator><creator>Kakarla, Raghava Reddy</creator><creator>Ravi, Parnapalle</creator><creator>Sathish, Marappan</creator><creator>Karthik, Mani</creator><creator>Muthukonda Venkatakrishnan, Shankar</creator><creator>Inamuddin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0524-9940</orcidid></search><sort><creationdate>20180901</creationdate><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><author>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Computing time</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Energy efficiency</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Light intensity</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Photocatalysts</topic><topic>Pollution</topic><topic>Review</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmana Reddy, Nagappagari</creatorcontrib><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Mamatha Kumari, Murkinati</creatorcontrib><creatorcontrib>Kakarla, Raghava Reddy</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Muthukonda Venkatakrishnan, Shankar</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmana Reddy, Nagappagari</au><au>Navakoteswara Rao, Vempuluru</au><au>Mamatha Kumari, Murkinati</au><au>Kakarla, Raghava Reddy</au><au>Ravi, Parnapalle</au><au>Sathish, Marappan</au><au>Karthik, Mani</au><au>Muthukonda Venkatakrishnan, Shankar</au><au>Inamuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured semiconducting materials for efficient hydrogen generation</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>765</spage><epage>796</epage><pages>765-796</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO 2 -based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO 2 nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h −1   g cat - 1 , whereas TiO 2 /Au nanocomposites display 1,60,000 µmol h −1   g cat - 1 . For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h −1   g cat - 1 and (b) CuO–Cr 2 O 3 as co-catalyst immobilized on TiO 2 system produces around 82,390 µmol h −1   g cat - 1 .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-018-0722-y</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0524-9940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-3653
ispartof Environmental chemistry letters, 2018-09, Vol.16 (3), p.765-796
issn 1610-3653
1610-3661
language eng
recordid cdi_proquest_journals_2009849128
source SpringerNature Journals
subjects Analytical Chemistry
Catalysis
Catalysts
Chemical synthesis
Computing time
Earth and Environmental Science
Ecotoxicology
Energy efficiency
Environment
Environmental Chemistry
Geochemistry
Gold
Heavy metals
Hydrogen
Hydrogen production
Light intensity
Light sources
Luminous intensity
Metal oxide semiconductors
Metal oxides
Metals
Nanocomposites
Oxidation
Photocatalysts
Pollution
Review
Titanium dioxide
title Nanostructured semiconducting materials for efficient hydrogen generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20semiconducting%20materials%20for%20efficient%20hydrogen%20generation&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Lakshmana%20Reddy,%20Nagappagari&rft.date=2018-09-01&rft.volume=16&rft.issue=3&rft.spage=765&rft.epage=796&rft.pages=765-796&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-018-0722-y&rft_dat=%3Cproquest_cross%3E2009849128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009849128&rft_id=info:pmid/&rfr_iscdi=true