Nanostructured semiconducting materials for efficient hydrogen generation
Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen...
Gespeichert in:
Veröffentlicht in: | Environmental chemistry letters 2018-09, Vol.16 (3), p.765-796 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 796 |
---|---|
container_issue | 3 |
container_start_page | 765 |
container_title | Environmental chemistry letters |
container_volume | 16 |
creator | Lakshmana Reddy, Nagappagari Navakoteswara Rao, Vempuluru Mamatha Kumari, Murkinati Kakarla, Raghava Reddy Ravi, Parnapalle Sathish, Marappan Karthik, Mani Muthukonda Venkatakrishnan, Shankar Inamuddin |
description | Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO
2
-based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO
2
nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h
−1
g
cat
-
1
, whereas TiO
2
/Au nanocomposites display 1,60,000 µmol h
−1
g
cat
-
1
. For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h
−1
g
cat
-
1
and (b) CuO–Cr
2
O
3
as co-catalyst immobilized on TiO
2
system produces around 82,390 µmol h
−1
g
cat
-
1
. |
doi_str_mv | 10.1007/s10311-018-0722-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009849128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009849128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZtE3Toyx-LCx60XNI87FmcZM1aQ_992ap6MnDMDPwvDPwEHKNcIsA7V1CqBBLQF5CS2k5nZAFMoSyYgxPf-emOicXKe0AKM3YgqxfpA9piKMaxmh0kczeqeB13p3fFns5mOjkZypsiIWx1iln_FB8TDqGrfFFLhPl4IK_JGc2g-bqpy_J--PD2-q53Lw-rVf3m1JVnA5lzZua6V420DWGdqzX0GKjqNSS2R40a1HpRkkOrObYUWq1rGiDnDPeWuDVktzMdw8xfI0mDWIXxujzS0EBOl53SI8UzpSKIaVorDhEt5dxEgjiaEzMxkQ2Jo7GxJQzdM6kzPqtiX-X_w99A7Kqbxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009849128</pqid></control><display><type>article</type><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><source>SpringerNature Journals</source><creator>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</creator><creatorcontrib>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</creatorcontrib><description>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO
2
-based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO
2
nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h
−1
g
cat
-
1
, whereas TiO
2
/Au nanocomposites display 1,60,000 µmol h
−1
g
cat
-
1
. For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h
−1
g
cat
-
1
and (b) CuO–Cr
2
O
3
as co-catalyst immobilized on TiO
2
system produces around 82,390 µmol h
−1
g
cat
-
1
.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-018-0722-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Catalysis ; Catalysts ; Chemical synthesis ; Computing time ; Earth and Environmental Science ; Ecotoxicology ; Energy efficiency ; Environment ; Environmental Chemistry ; Geochemistry ; Gold ; Heavy metals ; Hydrogen ; Hydrogen production ; Light intensity ; Light sources ; Luminous intensity ; Metal oxide semiconductors ; Metal oxides ; Metals ; Nanocomposites ; Oxidation ; Photocatalysts ; Pollution ; Review ; Titanium dioxide</subject><ispartof>Environmental chemistry letters, 2018-09, Vol.16 (3), p.765-796</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Environmental Chemistry Letters is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</citedby><cites>FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</cites><orcidid>0000-0003-0524-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10311-018-0722-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10311-018-0722-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Lakshmana Reddy, Nagappagari</creatorcontrib><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Mamatha Kumari, Murkinati</creatorcontrib><creatorcontrib>Kakarla, Raghava Reddy</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Muthukonda Venkatakrishnan, Shankar</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO
2
-based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO
2
nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h
−1
g
cat
-
1
, whereas TiO
2
/Au nanocomposites display 1,60,000 µmol h
−1
g
cat
-
1
. For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h
−1
g
cat
-
1
and (b) CuO–Cr
2
O
3
as co-catalyst immobilized on TiO
2
system produces around 82,390 µmol h
−1
g
cat
-
1
.</description><subject>Analytical Chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Computing time</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Energy efficiency</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Light intensity</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Photocatalysts</subject><subject>Pollution</subject><subject>Review</subject><subject>Titanium dioxide</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZtE3Toyx-LCx60XNI87FmcZM1aQ_992ap6MnDMDPwvDPwEHKNcIsA7V1CqBBLQF5CS2k5nZAFMoSyYgxPf-emOicXKe0AKM3YgqxfpA9piKMaxmh0kczeqeB13p3fFns5mOjkZypsiIWx1iln_FB8TDqGrfFFLhPl4IK_JGc2g-bqpy_J--PD2-q53Lw-rVf3m1JVnA5lzZua6V420DWGdqzX0GKjqNSS2R40a1HpRkkOrObYUWq1rGiDnDPeWuDVktzMdw8xfI0mDWIXxujzS0EBOl53SI8UzpSKIaVorDhEt5dxEgjiaEzMxkQ2Jo7GxJQzdM6kzPqtiX-X_w99A7Kqbxo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Lakshmana Reddy, Nagappagari</creator><creator>Navakoteswara Rao, Vempuluru</creator><creator>Mamatha Kumari, Murkinati</creator><creator>Kakarla, Raghava Reddy</creator><creator>Ravi, Parnapalle</creator><creator>Sathish, Marappan</creator><creator>Karthik, Mani</creator><creator>Muthukonda Venkatakrishnan, Shankar</creator><creator>Inamuddin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0524-9940</orcidid></search><sort><creationdate>20180901</creationdate><title>Nanostructured semiconducting materials for efficient hydrogen generation</title><author>Lakshmana Reddy, Nagappagari ; Navakoteswara Rao, Vempuluru ; Mamatha Kumari, Murkinati ; Kakarla, Raghava Reddy ; Ravi, Parnapalle ; Sathish, Marappan ; Karthik, Mani ; Muthukonda Venkatakrishnan, Shankar ; Inamuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-48546dba5095e296bd0715c2ada6fb0d671cd5ca806481922fda325188687f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Computing time</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Energy efficiency</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Light intensity</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Photocatalysts</topic><topic>Pollution</topic><topic>Review</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmana Reddy, Nagappagari</creatorcontrib><creatorcontrib>Navakoteswara Rao, Vempuluru</creatorcontrib><creatorcontrib>Mamatha Kumari, Murkinati</creatorcontrib><creatorcontrib>Kakarla, Raghava Reddy</creatorcontrib><creatorcontrib>Ravi, Parnapalle</creatorcontrib><creatorcontrib>Sathish, Marappan</creatorcontrib><creatorcontrib>Karthik, Mani</creatorcontrib><creatorcontrib>Muthukonda Venkatakrishnan, Shankar</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmana Reddy, Nagappagari</au><au>Navakoteswara Rao, Vempuluru</au><au>Mamatha Kumari, Murkinati</au><au>Kakarla, Raghava Reddy</au><au>Ravi, Parnapalle</au><au>Sathish, Marappan</au><au>Karthik, Mani</au><au>Muthukonda Venkatakrishnan, Shankar</au><au>Inamuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured semiconducting materials for efficient hydrogen generation</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>765</spage><epage>796</epage><pages>765-796</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Massive production of hydrogen by water decomposition triggered by a solar light active photocatalyst is a major objective in chemistry and a promising avenue to overcome the global energy crisis. The development of efficient, stable, economically viable and eco-friendly photocatalysts for hydrogen production is a challenging task. This article reviews the use of nanocomposite in three combinations: metal oxide–metal oxide semiconductor, metal–metal oxide semiconductor and metal chalcogenide–metal oxide core–shell nanostructures. These core–shell structures occur in two forms: a simple form where the photocatalyst is either in the core or the shell or in a more complex system where the core–shell structure comprises a co-catalyst deposited on a semiconducting material. We discuss the design, synthesis and development of semiconductor-based nanocomposite photocatalysts for hydrogen production. The major points are the role of catalytic active sites, the chemical nature of sacrificial agents, the effect of light sources, the variable light intensity and the energy efficiency calculation. For TiO
2
-based nanocomposites, the metal oxide or metal co-catalyst loading of 1.0–3.0 wt% was optimal. TiO
2
nanotube–CuO hybrid nanocomposites produce 1,14,000 µmol h
−1
g
cat
-
1
, whereas TiO
2
/Au nanocomposites display 1,60,000 µmol h
−1
g
cat
-
1
. For core–shell catalysts, a shell thickness of 2–20 nm was found for the best activity, and its performance is as follows: (a) CdS–NiO system produces around 19,949 µmol h
−1
g
cat
-
1
and (b) CuO–Cr
2
O
3
as co-catalyst immobilized on TiO
2
system produces around 82,390 µmol h
−1
g
cat
-
1
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-018-0722-y</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0524-9940</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-3653 |
ispartof | Environmental chemistry letters, 2018-09, Vol.16 (3), p.765-796 |
issn | 1610-3653 1610-3661 |
language | eng |
recordid | cdi_proquest_journals_2009849128 |
source | SpringerNature Journals |
subjects | Analytical Chemistry Catalysis Catalysts Chemical synthesis Computing time Earth and Environmental Science Ecotoxicology Energy efficiency Environment Environmental Chemistry Geochemistry Gold Heavy metals Hydrogen Hydrogen production Light intensity Light sources Luminous intensity Metal oxide semiconductors Metal oxides Metals Nanocomposites Oxidation Photocatalysts Pollution Review Titanium dioxide |
title | Nanostructured semiconducting materials for efficient hydrogen generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20semiconducting%20materials%20for%20efficient%20hydrogen%20generation&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Lakshmana%20Reddy,%20Nagappagari&rft.date=2018-09-01&rft.volume=16&rft.issue=3&rft.spage=765&rft.epage=796&rft.pages=765-796&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-018-0722-y&rft_dat=%3Cproquest_cross%3E2009849128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009849128&rft_id=info:pmid/&rfr_iscdi=true |