Ecological complexity buffers the impacts of future climate on marine consumers

Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities 1 – 3 . Yet, our understanding of the ecological imprint of ocean acidification (elevated CO 2 ) and climate change (elevated tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2018-03, Vol.8 (3), p.229-233
Hauptverfasser: Goldenberg, Silvan U., Nagelkerken, Ivan, Marangon, Emma, Bonnet, Angélique, Ferreira, Camilo M., Connell, Sean D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 3
container_start_page 229
container_title Nature climate change
container_volume 8
creator Goldenberg, Silvan U.
Nagelkerken, Ivan
Marangon, Emma
Bonnet, Angélique
Ferreira, Camilo M.
Connell, Sean D.
description Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities 1 – 3 . Yet, our understanding of the ecological imprint of ocean acidification (elevated CO 2 ) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems 4 , 5 . By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO 2 . While individual behaviours were impaired by elevated CO 2 , consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO 2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO 2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities. The complexity of ecosystems could influence how warmer waters and acidification affect marine biota. In this study, whilst individual behaviours were affected by increased CO 2 , community dynamics buffered the impacts on fish and crustaceans.
doi_str_mv 10.1038/s41558-018-0086-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009582606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009582606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3be6b503d44a16fdd74c6499c53e3617beba0a063320c2bfe5aba1c01169acad3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOOY-gG8Bn6uXpk3TRxlTB4O9KPgWkjSZHW1TkxTctzejok8eHHcc9_vf8UfolsA9AcofQkHKkmdAUgJnGVygBanShFU1v_zt-fs1WoVwhBQVYZTVC7TfaNe5Q6tlh7Xrx858tfGE1WSt8QHHD4PbfpQ6BuwstlOcvMG6a3sZDXYD7qVvhzRxQ5j6RNygKyu7YFY_dYnenjav65dst3_erh93maY8jxlVhqkSaFMUkjDbNFWhWVHXuqSGMlIpoyRIYJTmoHNlTSmVJBoIYbXUsqFLdDfrjt59TiZEcXSTH9JJkQPUJc9ZopeIzFvauxC8sWL06XV_EgTE2ToxWyeSdeJsnYDE5DMT0u5wMP5P-X_oG6_wcgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009582606</pqid></control><display><type>article</type><title>Ecological complexity buffers the impacts of future climate on marine consumers</title><source>Springer Nature - Complete Springer Journals</source><creator>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Marangon, Emma ; Bonnet, Angélique ; Ferreira, Camilo M. ; Connell, Sean D.</creator><creatorcontrib>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Marangon, Emma ; Bonnet, Angélique ; Ferreira, Camilo M. ; Connell, Sean D.</creatorcontrib><description>Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities 1 – 3 . Yet, our understanding of the ecological imprint of ocean acidification (elevated CO 2 ) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems 4 , 5 . By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO 2 . While individual behaviours were impaired by elevated CO 2 , consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO 2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO 2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities. The complexity of ecosystems could influence how warmer waters and acidification affect marine biota. In this study, whilst individual behaviours were affected by increased CO 2 , community dynamics buffered the impacts on fish and crustaceans.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-018-0086-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2165 ; 631/158/853 ; 704/158/2446 ; 704/829/826 ; Acidification ; Aquatic crustaceans ; Buffers ; Capacity ; Carbon dioxide ; Climate ; Climate Change ; Climate Change/Climate Change Impacts ; Communities ; Complexity ; Consumers ; Crustaceans ; Dynamics ; Earth and Environmental Science ; Environment ; Environmental changes ; Environmental effects ; Environmental Law/Policy/Ecojustice ; Fish ; Foraging ; Foraging habitats ; Future climates ; Habitat selection ; High temperature ; Interactions ; Interspecific relationships ; Letter ; Marine ecology ; Mesocosms ; Ocean acidification ; Predation ; Predators ; Risk taking ; Shellfish ; Species ; Temperature ; Temperature effects ; Vulnerability</subject><ispartof>Nature climate change, 2018-03, Vol.8 (3), p.229-233</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3be6b503d44a16fdd74c6499c53e3617beba0a063320c2bfe5aba1c01169acad3</citedby><cites>FETCH-LOGICAL-c382t-3be6b503d44a16fdd74c6499c53e3617beba0a063320c2bfe5aba1c01169acad3</cites><orcidid>0000-0003-4499-3940 ; 0000-0001-9022-1963 ; 0000-0002-5350-6852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-018-0086-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-018-0086-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Marangon, Emma</creatorcontrib><creatorcontrib>Bonnet, Angélique</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><title>Ecological complexity buffers the impacts of future climate on marine consumers</title><title>Nature climate change</title><addtitle>Nature Clim Change</addtitle><description>Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities 1 – 3 . Yet, our understanding of the ecological imprint of ocean acidification (elevated CO 2 ) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems 4 , 5 . By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO 2 . While individual behaviours were impaired by elevated CO 2 , consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO 2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO 2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities. The complexity of ecosystems could influence how warmer waters and acidification affect marine biota. In this study, whilst individual behaviours were affected by increased CO 2 , community dynamics buffered the impacts on fish and crustaceans.</description><subject>631/158/2165</subject><subject>631/158/853</subject><subject>704/158/2446</subject><subject>704/829/826</subject><subject>Acidification</subject><subject>Aquatic crustaceans</subject><subject>Buffers</subject><subject>Capacity</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Communities</subject><subject>Complexity</subject><subject>Consumers</subject><subject>Crustaceans</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental changes</subject><subject>Environmental effects</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Fish</subject><subject>Foraging</subject><subject>Foraging habitats</subject><subject>Future climates</subject><subject>Habitat selection</subject><subject>High temperature</subject><subject>Interactions</subject><subject>Interspecific relationships</subject><subject>Letter</subject><subject>Marine ecology</subject><subject>Mesocosms</subject><subject>Ocean acidification</subject><subject>Predation</subject><subject>Predators</subject><subject>Risk taking</subject><subject>Shellfish</subject><subject>Species</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Vulnerability</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kFFLwzAQx4MoOOY-gG8Bn6uXpk3TRxlTB4O9KPgWkjSZHW1TkxTctzejok8eHHcc9_vf8UfolsA9AcofQkHKkmdAUgJnGVygBanShFU1v_zt-fs1WoVwhBQVYZTVC7TfaNe5Q6tlh7Xrx858tfGE1WSt8QHHD4PbfpQ6BuwstlOcvMG6a3sZDXYD7qVvhzRxQ5j6RNygKyu7YFY_dYnenjav65dst3_erh93maY8jxlVhqkSaFMUkjDbNFWhWVHXuqSGMlIpoyRIYJTmoHNlTSmVJBoIYbXUsqFLdDfrjt59TiZEcXSTH9JJkQPUJc9ZopeIzFvauxC8sWL06XV_EgTE2ToxWyeSdeJsnYDE5DMT0u5wMP5P-X_oG6_wcgY</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Goldenberg, Silvan U.</creator><creator>Nagelkerken, Ivan</creator><creator>Marangon, Emma</creator><creator>Bonnet, Angélique</creator><creator>Ferreira, Camilo M.</creator><creator>Connell, Sean D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid><orcidid>https://orcid.org/0000-0001-9022-1963</orcidid><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid></search><sort><creationdate>20180301</creationdate><title>Ecological complexity buffers the impacts of future climate on marine consumers</title><author>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Marangon, Emma ; Bonnet, Angélique ; Ferreira, Camilo M. ; Connell, Sean D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3be6b503d44a16fdd74c6499c53e3617beba0a063320c2bfe5aba1c01169acad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/158/2165</topic><topic>631/158/853</topic><topic>704/158/2446</topic><topic>704/829/826</topic><topic>Acidification</topic><topic>Aquatic crustaceans</topic><topic>Buffers</topic><topic>Capacity</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Communities</topic><topic>Complexity</topic><topic>Consumers</topic><topic>Crustaceans</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental changes</topic><topic>Environmental effects</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Fish</topic><topic>Foraging</topic><topic>Foraging habitats</topic><topic>Future climates</topic><topic>Habitat selection</topic><topic>High temperature</topic><topic>Interactions</topic><topic>Interspecific relationships</topic><topic>Letter</topic><topic>Marine ecology</topic><topic>Mesocosms</topic><topic>Ocean acidification</topic><topic>Predation</topic><topic>Predators</topic><topic>Risk taking</topic><topic>Shellfish</topic><topic>Species</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Marangon, Emma</creatorcontrib><creatorcontrib>Bonnet, Angélique</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldenberg, Silvan U.</au><au>Nagelkerken, Ivan</au><au>Marangon, Emma</au><au>Bonnet, Angélique</au><au>Ferreira, Camilo M.</au><au>Connell, Sean D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological complexity buffers the impacts of future climate on marine consumers</atitle><jtitle>Nature climate change</jtitle><stitle>Nature Clim Change</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>229</spage><epage>233</epage><pages>229-233</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities 1 – 3 . Yet, our understanding of the ecological imprint of ocean acidification (elevated CO 2 ) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems 4 , 5 . By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO 2 . While individual behaviours were impaired by elevated CO 2 , consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO 2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO 2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities. The complexity of ecosystems could influence how warmer waters and acidification affect marine biota. In this study, whilst individual behaviours were affected by increased CO 2 , community dynamics buffered the impacts on fish and crustaceans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-018-0086-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid><orcidid>https://orcid.org/0000-0001-9022-1963</orcidid><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1758-678X
ispartof Nature climate change, 2018-03, Vol.8 (3), p.229-233
issn 1758-678X
1758-6798
language eng
recordid cdi_proquest_journals_2009582606
source Springer Nature - Complete Springer Journals
subjects 631/158/2165
631/158/853
704/158/2446
704/829/826
Acidification
Aquatic crustaceans
Buffers
Capacity
Carbon dioxide
Climate
Climate Change
Climate Change/Climate Change Impacts
Communities
Complexity
Consumers
Crustaceans
Dynamics
Earth and Environmental Science
Environment
Environmental changes
Environmental effects
Environmental Law/Policy/Ecojustice
Fish
Foraging
Foraging habitats
Future climates
Habitat selection
High temperature
Interactions
Interspecific relationships
Letter
Marine ecology
Mesocosms
Ocean acidification
Predation
Predators
Risk taking
Shellfish
Species
Temperature
Temperature effects
Vulnerability
title Ecological complexity buffers the impacts of future climate on marine consumers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20complexity%20buffers%20the%20impacts%20of%20future%20climate%20on%20marine%20consumers&rft.jtitle=Nature%20climate%20change&rft.au=Goldenberg,%20Silvan%20U.&rft.date=2018-03-01&rft.volume=8&rft.issue=3&rft.spage=229&rft.epage=233&rft.pages=229-233&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-018-0086-0&rft_dat=%3Cproquest_cross%3E2009582606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009582606&rft_id=info:pmid/&rfr_iscdi=true