Trajectory fitting estimators for SPDEs driven by additive noise

In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2018-04, Vol.21 (1), p.1-19
Hauptverfasser: Cialenco, Igor, Gong, Ruoting, Huang, Yicong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems
container_volume 21
creator Cialenco, Igor
Gong, Ruoting
Huang, Yicong
description In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The estimators are constructed by fitting the observed trajectory with an artificial one, and can be viewed as an analog to the classical least squares estimators from the time-series analysis. As in the existing literature on statistical inference for SPDEs, we take a spectral approach, and assume that we observe the first N Fourier modes of the solution, and we study the consistency and the asymptotic normality of the TFE, as N → ∞ .
doi_str_mv 10.1007/s11203-016-9152-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009263480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009263480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-891d406232c2de41aa9d92fb7adec867e30e4309cbc4c1e2ab09fcca4df1ddad3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOnpOkrlkp9R6gYKCdR0yuZQpOlOTqTBvb8oIrlydC_9_Lh8hlwjXCFDdJEQOggGWTGHBGT8iMywqzpRAPM65qCsGdSVPyVlKWwAoC-QzcruOZuvt0MeRhnYY2m5DfRraT5NbiYY-0rfX-2WiLrbfvqPNSI1z7ZAL2vVt8ufkJJiP5C9-45y8PyzXiye2enl8XtytmJVYDKxW6CSUXHDLnZdojHKKh6Yyztu6rLwALwUo21hp0XPTgArWGukCOmecmJOrae4u9l_7fKLe9vvY5ZWaAyheCllDVuGksrFPKfqgdzH_EkeNoA-g9ARKZ1D6AErz7OGTJ2Vtt_Hxb_L_ph98Q2ud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009263480</pqid></control><display><type>article</type><title>Trajectory fitting estimators for SPDEs driven by additive noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Cialenco, Igor ; Gong, Ruoting ; Huang, Yicong</creator><creatorcontrib>Cialenco, Igor ; Gong, Ruoting ; Huang, Yicong</creatorcontrib><description>In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The estimators are constructed by fitting the observed trajectory with an artificial one, and can be viewed as an analog to the classical least squares estimators from the time-series analysis. As in the existing literature on statistical inference for SPDEs, we take a spectral approach, and assume that we observe the first N Fourier modes of the solution, and we study the consistency and the asymptotic normality of the TFE, as N → ∞ .</description><identifier>ISSN: 1387-0874</identifier><identifier>EISSN: 1572-9311</identifier><identifier>DOI: 10.1007/s11203-016-9152-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Economic models ; Estimating techniques ; Estimators ; Mathematics ; Mathematics and Statistics ; Normality ; Partial differential equations ; Probability Theory and Stochastic Processes ; Regression analysis ; Statistical inference ; Statistical Theory and Methods ; Time series ; Trajectory analysis</subject><ispartof>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2018-04, Vol.21 (1), p.1-19</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-891d406232c2de41aa9d92fb7adec867e30e4309cbc4c1e2ab09fcca4df1ddad3</citedby><cites>FETCH-LOGICAL-c415t-891d406232c2de41aa9d92fb7adec867e30e4309cbc4c1e2ab09fcca4df1ddad3</cites><orcidid>0000-0002-5185-4765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11203-016-9152-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11203-016-9152-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Gong, Ruoting</creatorcontrib><creatorcontrib>Huang, Yicong</creatorcontrib><title>Trajectory fitting estimators for SPDEs driven by additive noise</title><title>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</title><addtitle>Stat Inference Stoch Process</addtitle><description>In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The estimators are constructed by fitting the observed trajectory with an artificial one, and can be viewed as an analog to the classical least squares estimators from the time-series analysis. As in the existing literature on statistical inference for SPDEs, we take a spectral approach, and assume that we observe the first N Fourier modes of the solution, and we study the consistency and the asymptotic normality of the TFE, as N → ∞ .</description><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normality</subject><subject>Partial differential equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Time series</subject><subject>Trajectory analysis</subject><issn>1387-0874</issn><issn>1572-9311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOnpOkrlkp9R6gYKCdR0yuZQpOlOTqTBvb8oIrlydC_9_Lh8hlwjXCFDdJEQOggGWTGHBGT8iMywqzpRAPM65qCsGdSVPyVlKWwAoC-QzcruOZuvt0MeRhnYY2m5DfRraT5NbiYY-0rfX-2WiLrbfvqPNSI1z7ZAL2vVt8ufkJJiP5C9-45y8PyzXiye2enl8XtytmJVYDKxW6CSUXHDLnZdojHKKh6Yyztu6rLwALwUo21hp0XPTgArWGukCOmecmJOrae4u9l_7fKLe9vvY5ZWaAyheCllDVuGksrFPKfqgdzH_EkeNoA-g9ARKZ1D6AErz7OGTJ2Vtt_Hxb_L_ph98Q2ud</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Cialenco, Igor</creator><creator>Gong, Ruoting</creator><creator>Huang, Yicong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5185-4765</orcidid></search><sort><creationdate>20180401</creationdate><title>Trajectory fitting estimators for SPDEs driven by additive noise</title><author>Cialenco, Igor ; Gong, Ruoting ; Huang, Yicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-891d406232c2de41aa9d92fb7adec867e30e4309cbc4c1e2ab09fcca4df1ddad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normality</topic><topic>Partial differential equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Time series</topic><topic>Trajectory analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Cialenco, Igor</creatorcontrib><creatorcontrib>Gong, Ruoting</creatorcontrib><creatorcontrib>Huang, Yicong</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cialenco, Igor</au><au>Gong, Ruoting</au><au>Huang, Yicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory fitting estimators for SPDEs driven by additive noise</atitle><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle><stitle>Stat Inference Stoch Process</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1387-0874</issn><eissn>1572-9311</eissn><abstract>In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The estimators are constructed by fitting the observed trajectory with an artificial one, and can be viewed as an analog to the classical least squares estimators from the time-series analysis. As in the existing literature on statistical inference for SPDEs, we take a spectral approach, and assume that we observe the first N Fourier modes of the solution, and we study the consistency and the asymptotic normality of the TFE, as N → ∞ .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11203-016-9152-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5185-4765</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-0874
ispartof Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2018-04, Vol.21 (1), p.1-19
issn 1387-0874
1572-9311
language eng
recordid cdi_proquest_journals_2009263480
source Springer Nature - Complete Springer Journals
subjects Economic models
Estimating techniques
Estimators
Mathematics
Mathematics and Statistics
Normality
Partial differential equations
Probability Theory and Stochastic Processes
Regression analysis
Statistical inference
Statistical Theory and Methods
Time series
Trajectory analysis
title Trajectory fitting estimators for SPDEs driven by additive noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20fitting%20estimators%20for%20SPDEs%20driven%20by%20additive%20noise&rft.jtitle=Statistical%20inference%20for%20stochastic%20processes%20:%20an%20international%20journal%20devoted%20to%20time%20series%20analysis%20and%20the%20statistics%20of%20continuous%20time%20processes%20and%20dynamic%20systems&rft.au=Cialenco,%20Igor&rft.date=2018-04-01&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1387-0874&rft.eissn=1572-9311&rft_id=info:doi/10.1007/s11203-016-9152-2&rft_dat=%3Cproquest_cross%3E2009263480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009263480&rft_id=info:pmid/&rfr_iscdi=true