Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach

Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (NO3−),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global Change Biology. Bioenergy 2018-04, Vol.10 (4), p.287-302
Hauptverfasser: Lai, Liming, Kumar, Sandeep, Folle, Solomon M., Owens, Vance N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 4
container_start_page 287
container_title Global Change Biology. Bioenergy
container_volume 10
creator Lai, Liming
Kumar, Sandeep
Folle, Solomon M.
Owens, Vance N.
description Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (NO3−), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3−, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, NO3−, and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil NO3−, WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and NO3−, and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.
doi_str_mv 10.1111/gcbb.12490
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2009151014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009151014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4310-650e63b1a3f7e033918d3e51de902a41f5d2f9576638bc8219d7c5bcb5c3f78d3</originalsourceid><addsrcrecordid>eNp9kUtPwzAMxysEEs8LnyCCG9JG3DTtyg3GeEgTcIADpyhN3C2oS0aSgSbx4ckoXPHBtuyfH9I_y46BDiHZ-Uw1zRDyoqZb2R5UvBpARavtv7ys2W62H8IbpSUvod7Lvp48aqOisTMSnOkCkVYTtB_GO7tAG2VHzGIpVUydEJwyMqImnybOSUhezWc-1UnrPGmMQ4t-tiZL7_QqLXX2gkhyffk6njw8k4XT2G0OyWUCpJofZjut7AIe_caD7OVm8jy-G0wfb-_Hl9OBKhjQQckplqwBydoKKWM1jDRDDhprmssCWq7ztuZVWbJRo0Y51LpSvFENV2kisQfZSb_XhWhEUCaimitnLaoooADGOE_QaQ-l395XGKJ4cytv018ip7QGDhSKRJ31lPIuBI-tWHqzkH4tgIqNBGIjgfiRIMHQw5-mw_U_pLgdX131M9_Z9YnH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009151014</pqid></control><display><type>article</type><title>Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Lai, Liming ; Kumar, Sandeep ; Folle, Solomon M. ; Owens, Vance N.</creator><creatorcontrib>Lai, Liming ; Kumar, Sandeep ; Folle, Solomon M. ; Owens, Vance N. ; South Dakota State Univ., Brookings, SD (United States)</creatorcontrib><description>Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (NO3−), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3−, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, NO3−, and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil NO3−, WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and NO3−, and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.12490</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>09 BIOMASS FUELS ; Calibration ; Carbon dioxide ; carbon dioxide flux ; carbon dioxide flux ; Data processing ; DAYCENT model ; Environmental assessment ; Environmental impact ; Fertilization ; Fluxes ; Greenhouse effect ; Greenhouse gases ; Impact prediction ; Landscape ; Nitrates ; Nitrogen ; Nitrous oxide ; nitrous oxide flux ; nitrous oxide flux ; Organic carbon ; Organic soils ; Panicum virgatum ; Rainfall ; Renewable energy ; Shoulder ; Soil improvement ; soil nitrate ; soil organic carbon ; Soil temperature ; Soil water ; Soils ; switchgrass (Panicum virgatum L.) ; Yield</subject><ispartof>Global Change Biology. Bioenergy, 2018-04, Vol.10 (4), p.287-302</ispartof><rights>2017 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4310-650e63b1a3f7e033918d3e51de902a41f5d2f9576638bc8219d7c5bcb5c3f78d3</citedby><cites>FETCH-LOGICAL-c4310-650e63b1a3f7e033918d3e51de902a41f5d2f9576638bc8219d7c5bcb5c3f78d3</cites><orcidid>0000-0002-2717-5455 ; 0000000227175455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcbb.12490$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcbb.12490$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1413355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Liming</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Folle, Solomon M.</creatorcontrib><creatorcontrib>Owens, Vance N.</creatorcontrib><creatorcontrib>South Dakota State Univ., Brookings, SD (United States)</creatorcontrib><title>Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach</title><title>Global Change Biology. Bioenergy</title><description>Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (NO3−), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3−, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, NO3−, and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil NO3−, WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and NO3−, and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.</description><subject>09 BIOMASS FUELS</subject><subject>Calibration</subject><subject>Carbon dioxide</subject><subject>carbon dioxide flux</subject><subject>carbon dioxide flux</subject><subject>Data processing</subject><subject>DAYCENT model</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Fertilization</subject><subject>Fluxes</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Impact prediction</subject><subject>Landscape</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>nitrous oxide flux</subject><subject>nitrous oxide flux</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Panicum virgatum</subject><subject>Rainfall</subject><subject>Renewable energy</subject><subject>Shoulder</subject><subject>Soil improvement</subject><subject>soil nitrate</subject><subject>soil organic carbon</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Soils</subject><subject>switchgrass (Panicum virgatum L.)</subject><subject>Yield</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtPwzAMxysEEs8LnyCCG9JG3DTtyg3GeEgTcIADpyhN3C2oS0aSgSbx4ckoXPHBtuyfH9I_y46BDiHZ-Uw1zRDyoqZb2R5UvBpARavtv7ys2W62H8IbpSUvod7Lvp48aqOisTMSnOkCkVYTtB_GO7tAG2VHzGIpVUydEJwyMqImnybOSUhezWc-1UnrPGmMQ4t-tiZL7_QqLXX2gkhyffk6njw8k4XT2G0OyWUCpJofZjut7AIe_caD7OVm8jy-G0wfb-_Hl9OBKhjQQckplqwBydoKKWM1jDRDDhprmssCWq7ztuZVWbJRo0Y51LpSvFENV2kisQfZSb_XhWhEUCaimitnLaoooADGOE_QaQ-l395XGKJ4cytv018ip7QGDhSKRJ31lPIuBI-tWHqzkH4tgIqNBGIjgfiRIMHQw5-mw_U_pLgdX131M9_Z9YnH</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Lai, Liming</creator><creator>Kumar, Sandeep</creator><creator>Folle, Solomon M.</creator><creator>Owens, Vance N.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2717-5455</orcidid><orcidid>https://orcid.org/0000000227175455</orcidid></search><sort><creationdate>201804</creationdate><title>Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach</title><author>Lai, Liming ; Kumar, Sandeep ; Folle, Solomon M. ; Owens, Vance N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4310-650e63b1a3f7e033918d3e51de902a41f5d2f9576638bc8219d7c5bcb5c3f78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>09 BIOMASS FUELS</topic><topic>Calibration</topic><topic>Carbon dioxide</topic><topic>carbon dioxide flux</topic><topic>carbon dioxide flux</topic><topic>Data processing</topic><topic>DAYCENT model</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Fertilization</topic><topic>Fluxes</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Impact prediction</topic><topic>Landscape</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>nitrous oxide flux</topic><topic>nitrous oxide flux</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Panicum virgatum</topic><topic>Rainfall</topic><topic>Renewable energy</topic><topic>Shoulder</topic><topic>Soil improvement</topic><topic>soil nitrate</topic><topic>soil organic carbon</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Soils</topic><topic>switchgrass (Panicum virgatum L.)</topic><topic>Yield</topic><toplevel>online_resources</toplevel><creatorcontrib>Lai, Liming</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Folle, Solomon M.</creatorcontrib><creatorcontrib>Owens, Vance N.</creatorcontrib><creatorcontrib>South Dakota State Univ., Brookings, SD (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Global Change Biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Liming</au><au>Kumar, Sandeep</au><au>Folle, Solomon M.</au><au>Owens, Vance N.</au><aucorp>South Dakota State Univ., Brookings, SD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach</atitle><jtitle>Global Change Biology. Bioenergy</jtitle><date>2018-04</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>287</spage><epage>302</epage><pages>287-302</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (NO3−), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3−, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, NO3−, and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil NO3−, WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and NO3−, and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/gcbb.12490</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2717-5455</orcidid><orcidid>https://orcid.org/0000000227175455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-1693
ispartof Global Change Biology. Bioenergy, 2018-04, Vol.10 (4), p.287-302
issn 1757-1693
1757-1707
language eng
recordid cdi_proquest_journals_2009151014
source DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects 09 BIOMASS FUELS
Calibration
Carbon dioxide
carbon dioxide flux
carbon dioxide flux
Data processing
DAYCENT model
Environmental assessment
Environmental impact
Fertilization
Fluxes
Greenhouse effect
Greenhouse gases
Impact prediction
Landscape
Nitrates
Nitrogen
Nitrous oxide
nitrous oxide flux
nitrous oxide flux
Organic carbon
Organic soils
Panicum virgatum
Rainfall
Renewable energy
Shoulder
Soil improvement
soil nitrate
soil organic carbon
Soil temperature
Soil water
Soils
switchgrass (Panicum virgatum L.)
Yield
title Predicting soils and environmental impacts associated with switchgrass for bioenergy production: a DAYCENT modeling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20soils%20and%20environmental%20impacts%20associated%20with%20switchgrass%20for%20bioenergy%20production:%20a%20DAYCENT%20modeling%20approach&rft.jtitle=Global%20Change%20Biology.%20Bioenergy&rft.au=Lai,%20Liming&rft.aucorp=South%20Dakota%20State%20Univ.,%20Brookings,%20SD%20(United%20States)&rft.date=2018-04&rft.volume=10&rft.issue=4&rft.spage=287&rft.epage=302&rft.pages=287-302&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.12490&rft_dat=%3Cproquest_osti_%3E2009151014%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009151014&rft_id=info:pmid/&rfr_iscdi=true