Fast Recursive Computation of Krawtchouk Polynomials
Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2018-03, Vol.60 (3), p.285-303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 3 |
container_start_page | 285 |
container_title | Journal of mathematical imaging and vision |
container_volume | 60 |
creator | Abdulhussain, Sadiq H. Ramli, Abd Rahman Al-Haddad, Syed Abdul Rahman Mahmmod, Basheera M. Jassim, Wissam A. |
description | Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The
n
-
x
plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only
N
/ 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter
p
in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter
p
on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters
p
and polynomial size
N
, especially in reducing the computation time and the number of operations utilized. |
doi_str_mv | 10.1007/s10851-017-0758-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008924963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008924963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7-AG8Fz9GXJmmSoyyuiguK6Dmkaapdt01NWmX_vSkVPHkaeMzMYz6EzglcEgBxFQlITjAQgUFwidUBWhAuKBaFpIdoASpnWCkQx-gkxi0AyJyIBWJrE4fs2dkxxObLZSvf9uNghsZ3ma-zh2C-B_vux4_sye_2nW8bs4un6KhO4s5-dYle1zcvqzu8eby9X11vsKVcDbi0CmglpBOuolLWIAhVzLLSOF4Jlc6KWyEVM9wZWVFwrCyM5Y5Ra0xF6RJdzL198J-ji4Pe-jF06aXO04A0SRWTi8wuG3yMwdW6D01rwl4T0BMcPcPRCY6e4GiVMvmcicnbvbnw1_x_6AfTaWdK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008924963</pqid></control><display><type>article</type><title>Fast Recursive Computation of Krawtchouk Polynomials</title><source>Springer Online Journals Complete</source><creator>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</creator><creatorcontrib>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</creatorcontrib><description>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The
n
-
x
plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only
N
/ 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter
p
in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter
p
on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters
p
and polynomial size
N
, especially in reducing the computation time and the number of operations utilized.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-017-0758-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Coefficients ; Computation ; Computer Science ; Computer simulation ; Face recognition ; Feature extraction ; Image Processing and Computer Vision ; Image reconstruction ; Mathematical Methods in Physics ; Partitions ; Polynomials ; Recursive algorithms ; Signal processing ; Signal,Image and Speech Processing ; Symmetry ; Triangles</subject><ispartof>Journal of mathematical imaging and vision, 2018-03, Vol.60 (3), p.285-303</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</citedby><cites>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-017-0758-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-017-0758-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abdulhussain, Sadiq H.</creatorcontrib><creatorcontrib>Ramli, Abd Rahman</creatorcontrib><creatorcontrib>Al-Haddad, Syed Abdul Rahman</creatorcontrib><creatorcontrib>Mahmmod, Basheera M.</creatorcontrib><creatorcontrib>Jassim, Wissam A.</creatorcontrib><title>Fast Recursive Computation of Krawtchouk Polynomials</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The
n
-
x
plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only
N
/ 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter
p
in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter
p
on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters
p
and polynomial size
N
, especially in reducing the computation time and the number of operations utilized.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Mathematical Methods in Physics</subject><subject>Partitions</subject><subject>Polynomials</subject><subject>Recursive algorithms</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Symmetry</subject><subject>Triangles</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7-AG8Fz9GXJmmSoyyuiguK6Dmkaapdt01NWmX_vSkVPHkaeMzMYz6EzglcEgBxFQlITjAQgUFwidUBWhAuKBaFpIdoASpnWCkQx-gkxi0AyJyIBWJrE4fs2dkxxObLZSvf9uNghsZ3ma-zh2C-B_vux4_sye_2nW8bs4un6KhO4s5-dYle1zcvqzu8eby9X11vsKVcDbi0CmglpBOuolLWIAhVzLLSOF4Jlc6KWyEVM9wZWVFwrCyM5Y5Ra0xF6RJdzL198J-ji4Pe-jF06aXO04A0SRWTi8wuG3yMwdW6D01rwl4T0BMcPcPRCY6e4GiVMvmcicnbvbnw1_x_6AfTaWdK</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Abdulhussain, Sadiq H.</creator><creator>Ramli, Abd Rahman</creator><creator>Al-Haddad, Syed Abdul Rahman</creator><creator>Mahmmod, Basheera M.</creator><creator>Jassim, Wissam A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Fast Recursive Computation of Krawtchouk Polynomials</title><author>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Mathematical Methods in Physics</topic><topic>Partitions</topic><topic>Polynomials</topic><topic>Recursive algorithms</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Symmetry</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulhussain, Sadiq H.</creatorcontrib><creatorcontrib>Ramli, Abd Rahman</creatorcontrib><creatorcontrib>Al-Haddad, Syed Abdul Rahman</creatorcontrib><creatorcontrib>Mahmmod, Basheera M.</creatorcontrib><creatorcontrib>Jassim, Wissam A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulhussain, Sadiq H.</au><au>Ramli, Abd Rahman</au><au>Al-Haddad, Syed Abdul Rahman</au><au>Mahmmod, Basheera M.</au><au>Jassim, Wissam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Recursive Computation of Krawtchouk Polynomials</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>60</volume><issue>3</issue><spage>285</spage><epage>303</epage><pages>285-303</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The
n
-
x
plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only
N
/ 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter
p
in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter
p
on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters
p
and polynomial size
N
, especially in reducing the computation time and the number of operations utilized.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-017-0758-9</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2018-03, Vol.60 (3), p.285-303 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_proquest_journals_2008924963 |
source | Springer Online Journals Complete |
subjects | Algorithms Applications of Mathematics Coefficients Computation Computer Science Computer simulation Face recognition Feature extraction Image Processing and Computer Vision Image reconstruction Mathematical Methods in Physics Partitions Polynomials Recursive algorithms Signal processing Signal,Image and Speech Processing Symmetry Triangles |
title | Fast Recursive Computation of Krawtchouk Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Recursive%20Computation%20of%20Krawtchouk%20Polynomials&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Abdulhussain,%20Sadiq%20H.&rft.date=2018-03-01&rft.volume=60&rft.issue=3&rft.spage=285&rft.epage=303&rft.pages=285-303&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-017-0758-9&rft_dat=%3Cproquest_cross%3E2008924963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008924963&rft_id=info:pmid/&rfr_iscdi=true |