Fast Recursive Computation of Krawtchouk Polynomials

Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2018-03, Vol.60 (3), p.285-303
Hauptverfasser: Abdulhussain, Sadiq H., Ramli, Abd Rahman, Al-Haddad, Syed Abdul Rahman, Mahmmod, Basheera M., Jassim, Wissam A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 3
container_start_page 285
container_title Journal of mathematical imaging and vision
container_volume 60
creator Abdulhussain, Sadiq H.
Ramli, Abd Rahman
Al-Haddad, Syed Abdul Rahman
Mahmmod, Basheera M.
Jassim, Wissam A.
description Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The n - x plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N  / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N , especially in reducing the computation time and the number of operations utilized.
doi_str_mv 10.1007/s10851-017-0758-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008924963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008924963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7-AG8Fz9GXJmmSoyyuiguK6Dmkaapdt01NWmX_vSkVPHkaeMzMYz6EzglcEgBxFQlITjAQgUFwidUBWhAuKBaFpIdoASpnWCkQx-gkxi0AyJyIBWJrE4fs2dkxxObLZSvf9uNghsZ3ma-zh2C-B_vux4_sye_2nW8bs4un6KhO4s5-dYle1zcvqzu8eby9X11vsKVcDbi0CmglpBOuolLWIAhVzLLSOF4Jlc6KWyEVM9wZWVFwrCyM5Y5Ra0xF6RJdzL198J-ji4Pe-jF06aXO04A0SRWTi8wuG3yMwdW6D01rwl4T0BMcPcPRCY6e4GiVMvmcicnbvbnw1_x_6AfTaWdK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008924963</pqid></control><display><type>article</type><title>Fast Recursive Computation of Krawtchouk Polynomials</title><source>Springer Online Journals Complete</source><creator>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</creator><creatorcontrib>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</creatorcontrib><description>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The n - x plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N  / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N , especially in reducing the computation time and the number of operations utilized.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-017-0758-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Coefficients ; Computation ; Computer Science ; Computer simulation ; Face recognition ; Feature extraction ; Image Processing and Computer Vision ; Image reconstruction ; Mathematical Methods in Physics ; Partitions ; Polynomials ; Recursive algorithms ; Signal processing ; Signal,Image and Speech Processing ; Symmetry ; Triangles</subject><ispartof>Journal of mathematical imaging and vision, 2018-03, Vol.60 (3), p.285-303</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</citedby><cites>FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-017-0758-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-017-0758-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abdulhussain, Sadiq H.</creatorcontrib><creatorcontrib>Ramli, Abd Rahman</creatorcontrib><creatorcontrib>Al-Haddad, Syed Abdul Rahman</creatorcontrib><creatorcontrib>Mahmmod, Basheera M.</creatorcontrib><creatorcontrib>Jassim, Wissam A.</creatorcontrib><title>Fast Recursive Computation of Krawtchouk Polynomials</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The n - x plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N  / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N , especially in reducing the computation time and the number of operations utilized.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Mathematical Methods in Physics</subject><subject>Partitions</subject><subject>Polynomials</subject><subject>Recursive algorithms</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Symmetry</subject><subject>Triangles</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7-AG8Fz9GXJmmSoyyuiguK6Dmkaapdt01NWmX_vSkVPHkaeMzMYz6EzglcEgBxFQlITjAQgUFwidUBWhAuKBaFpIdoASpnWCkQx-gkxi0AyJyIBWJrE4fs2dkxxObLZSvf9uNghsZ3ma-zh2C-B_vux4_sye_2nW8bs4un6KhO4s5-dYle1zcvqzu8eby9X11vsKVcDbi0CmglpBOuolLWIAhVzLLSOF4Jlc6KWyEVM9wZWVFwrCyM5Y5Ra0xF6RJdzL198J-ji4Pe-jF06aXO04A0SRWTi8wuG3yMwdW6D01rwl4T0BMcPcPRCY6e4GiVMvmcicnbvbnw1_x_6AfTaWdK</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Abdulhussain, Sadiq H.</creator><creator>Ramli, Abd Rahman</creator><creator>Al-Haddad, Syed Abdul Rahman</creator><creator>Mahmmod, Basheera M.</creator><creator>Jassim, Wissam A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Fast Recursive Computation of Krawtchouk Polynomials</title><author>Abdulhussain, Sadiq H. ; Ramli, Abd Rahman ; Al-Haddad, Syed Abdul Rahman ; Mahmmod, Basheera M. ; Jassim, Wissam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bc903d78e7ed388f071394c4bae5d79e7e95c7894a5ea8d30e4b6ac5e43caad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Mathematical Methods in Physics</topic><topic>Partitions</topic><topic>Polynomials</topic><topic>Recursive algorithms</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Symmetry</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulhussain, Sadiq H.</creatorcontrib><creatorcontrib>Ramli, Abd Rahman</creatorcontrib><creatorcontrib>Al-Haddad, Syed Abdul Rahman</creatorcontrib><creatorcontrib>Mahmmod, Basheera M.</creatorcontrib><creatorcontrib>Jassim, Wissam A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulhussain, Sadiq H.</au><au>Ramli, Abd Rahman</au><au>Al-Haddad, Syed Abdul Rahman</au><au>Mahmmod, Basheera M.</au><au>Jassim, Wissam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Recursive Computation of Krawtchouk Polynomials</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>60</volume><issue>3</issue><spage>285</spage><epage>303</epage><pages>285-303</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The n - x plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N  / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N , especially in reducing the computation time and the number of operations utilized.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-017-0758-9</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2018-03, Vol.60 (3), p.285-303
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2008924963
source Springer Online Journals Complete
subjects Algorithms
Applications of Mathematics
Coefficients
Computation
Computer Science
Computer simulation
Face recognition
Feature extraction
Image Processing and Computer Vision
Image reconstruction
Mathematical Methods in Physics
Partitions
Polynomials
Recursive algorithms
Signal processing
Signal,Image and Speech Processing
Symmetry
Triangles
title Fast Recursive Computation of Krawtchouk Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Recursive%20Computation%20of%20Krawtchouk%20Polynomials&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Abdulhussain,%20Sadiq%20H.&rft.date=2018-03-01&rft.volume=60&rft.issue=3&rft.spage=285&rft.epage=303&rft.pages=285-303&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-017-0758-9&rft_dat=%3Cproquest_cross%3E2008924963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008924963&rft_id=info:pmid/&rfr_iscdi=true