Importance sampling: a review

We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance samplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics 2010-01, Vol.2 (1), p.54-60
Hauptverfasser: Tokdar, Surya T., Kass, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 54
container_title Wiley interdisciplinary reviews. Computational statistics
container_volume 2
creator Tokdar, Surya T.
Kass, Robert E.
description We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley & Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Sampling
doi_str_mv 10.1002/wics.56
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008732337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008732337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</originalsourceid><addsrcrecordid>eNp1z0tLw0AQAOBFFKxV_AVCwYMHSZ3NZDdZbxq0BksEXwUvyzbZldS2ibupsf_e1BRvMocZho95EHJMYUgB_IumyNyQ8R3SowKFB8Cj3W3NKET75MC5WdsN2-iRk2RRlbZWy0wPnFpU82L5fjlQA6u_Ct0ckj2j5k4fbXOfvNzePMd33vhhlMRXYy9Dgdxj-TQPmMkiGgnlm0CFKmDcgKG-ziFnxoCvKSojEGjenkIZ4lQbzZlQLDLYJ6fd3MqWnyvtajkrV3bZrpQ-QBSijxi26qxTmS2ds9rIyhYLZdeSgtz8Lje_S8Zbed7Jppjr9X9MTpL46Vd7nS5crb__tLIfkocYMjlJR_IxTu9fr1Mh3_AHlsxoKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008732337</pqid></control><display><type>article</type><title>Importance sampling: a review</title><source>Wiley Online Library All Journals</source><creator>Tokdar, Surya T. ; Kass, Robert E.</creator><creatorcontrib>Tokdar, Surya T. ; Kass, Robert E.</creatorcontrib><description>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley &amp; Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.56</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adaptation ; Approximation ; Data analysis ; Data processing ; Graphical methods ; Importance sampling ; Markov analysis ; Markov chain sampling ; Markov chains ; Monte Carlo approximation ; Monte Carlo simulation ; Optimization ; Population (statistical) ; Resampling ; Sampling ; Sampling methods ; Sampling techniques ; Sequential sampling ; Software ; Statistical methods</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2010-01, Vol.2 (1), p.54-60</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan/Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</citedby><cites>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.56$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.56$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Tokdar, Surya T.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><title>Importance sampling: a review</title><title>Wiley interdisciplinary reviews. Computational statistics</title><addtitle>WIREs Comp Stat</addtitle><description>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley &amp; Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling</description><subject>Adaptation</subject><subject>Approximation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Graphical methods</subject><subject>Importance sampling</subject><subject>Markov analysis</subject><subject>Markov chain sampling</subject><subject>Markov chains</subject><subject>Monte Carlo approximation</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Population (statistical)</subject><subject>Resampling</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Sequential sampling</subject><subject>Software</subject><subject>Statistical methods</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1z0tLw0AQAOBFFKxV_AVCwYMHSZ3NZDdZbxq0BksEXwUvyzbZldS2ibupsf_e1BRvMocZho95EHJMYUgB_IumyNyQ8R3SowKFB8Cj3W3NKET75MC5WdsN2-iRk2RRlbZWy0wPnFpU82L5fjlQA6u_Ct0ckj2j5k4fbXOfvNzePMd33vhhlMRXYy9Dgdxj-TQPmMkiGgnlm0CFKmDcgKG-ziFnxoCvKSojEGjenkIZ4lQbzZlQLDLYJ6fd3MqWnyvtajkrV3bZrpQ-QBSijxi26qxTmS2ds9rIyhYLZdeSgtz8Lje_S8Zbed7Jppjr9X9MTpL46Vd7nS5crb__tLIfkocYMjlJR_IxTu9fr1Mh3_AHlsxoKA</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Tokdar, Surya T.</creator><creator>Kass, Robert E.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201001</creationdate><title>Importance sampling: a review</title><author>Tokdar, Surya T. ; Kass, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Approximation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Graphical methods</topic><topic>Importance sampling</topic><topic>Markov analysis</topic><topic>Markov chain sampling</topic><topic>Markov chains</topic><topic>Monte Carlo approximation</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Population (statistical)</topic><topic>Resampling</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Sequential sampling</topic><topic>Software</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokdar, Surya T.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokdar, Surya T.</au><au>Kass, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance sampling: a review</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><addtitle>WIREs Comp Stat</addtitle><date>2010-01</date><risdate>2010</risdate><volume>2</volume><issue>1</issue><spage>54</spage><epage>60</epage><pages>54-60</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley &amp; Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/wics.56</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-5108
ispartof Wiley interdisciplinary reviews. Computational statistics, 2010-01, Vol.2 (1), p.54-60
issn 1939-5108
1939-0068
language eng
recordid cdi_proquest_journals_2008732337
source Wiley Online Library All Journals
subjects Adaptation
Approximation
Data analysis
Data processing
Graphical methods
Importance sampling
Markov analysis
Markov chain sampling
Markov chains
Monte Carlo approximation
Monte Carlo simulation
Optimization
Population (statistical)
Resampling
Sampling
Sampling methods
Sampling techniques
Sequential sampling
Software
Statistical methods
title Importance sampling: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20sampling:%20a%20review&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Tokdar,%20Surya%20T.&rft.date=2010-01&rft.volume=2&rft.issue=1&rft.spage=54&rft.epage=60&rft.pages=54-60&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.56&rft_dat=%3Cproquest_cross%3E2008732337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008732337&rft_id=info:pmid/&rfr_iscdi=true