Importance sampling: a review
We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance samplin...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational statistics 2010-01, Vol.2 (1), p.54-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Wiley interdisciplinary reviews. Computational statistics |
container_volume | 2 |
creator | Tokdar, Surya T. Kass, Robert E. |
description | We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley & Sons, Inc.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling |
doi_str_mv | 10.1002/wics.56 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008732337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008732337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</originalsourceid><addsrcrecordid>eNp1z0tLw0AQAOBFFKxV_AVCwYMHSZ3NZDdZbxq0BksEXwUvyzbZldS2ibupsf_e1BRvMocZho95EHJMYUgB_IumyNyQ8R3SowKFB8Cj3W3NKET75MC5WdsN2-iRk2RRlbZWy0wPnFpU82L5fjlQA6u_Ct0ckj2j5k4fbXOfvNzePMd33vhhlMRXYy9Dgdxj-TQPmMkiGgnlm0CFKmDcgKG-ziFnxoCvKSojEGjenkIZ4lQbzZlQLDLYJ6fd3MqWnyvtajkrV3bZrpQ-QBSijxi26qxTmS2ds9rIyhYLZdeSgtz8Lje_S8Zbed7Jppjr9X9MTpL46Vd7nS5crb__tLIfkocYMjlJR_IxTu9fr1Mh3_AHlsxoKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008732337</pqid></control><display><type>article</type><title>Importance sampling: a review</title><source>Wiley Online Library All Journals</source><creator>Tokdar, Surya T. ; Kass, Robert E.</creator><creatorcontrib>Tokdar, Surya T. ; Kass, Robert E.</creatorcontrib><description>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley & Sons, Inc.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.56</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adaptation ; Approximation ; Data analysis ; Data processing ; Graphical methods ; Importance sampling ; Markov analysis ; Markov chain sampling ; Markov chains ; Monte Carlo approximation ; Monte Carlo simulation ; Optimization ; Population (statistical) ; Resampling ; Sampling ; Sampling methods ; Sampling techniques ; Sequential sampling ; Software ; Statistical methods</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2010-01, Vol.2 (1), p.54-60</ispartof><rights>Copyright © 2009 John Wiley & Sons, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan/Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</citedby><cites>FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.56$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.56$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Tokdar, Surya T.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><title>Importance sampling: a review</title><title>Wiley interdisciplinary reviews. Computational statistics</title><addtitle>WIREs Comp Stat</addtitle><description>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley & Sons, Inc.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling</description><subject>Adaptation</subject><subject>Approximation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Graphical methods</subject><subject>Importance sampling</subject><subject>Markov analysis</subject><subject>Markov chain sampling</subject><subject>Markov chains</subject><subject>Monte Carlo approximation</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Population (statistical)</subject><subject>Resampling</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Sequential sampling</subject><subject>Software</subject><subject>Statistical methods</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1z0tLw0AQAOBFFKxV_AVCwYMHSZ3NZDdZbxq0BksEXwUvyzbZldS2ibupsf_e1BRvMocZho95EHJMYUgB_IumyNyQ8R3SowKFB8Cj3W3NKET75MC5WdsN2-iRk2RRlbZWy0wPnFpU82L5fjlQA6u_Ct0ckj2j5k4fbXOfvNzePMd33vhhlMRXYy9Dgdxj-TQPmMkiGgnlm0CFKmDcgKG-ziFnxoCvKSojEGjenkIZ4lQbzZlQLDLYJ6fd3MqWnyvtajkrV3bZrpQ-QBSijxi26qxTmS2ds9rIyhYLZdeSgtz8Lje_S8Zbed7Jppjr9X9MTpL46Vd7nS5crb__tLIfkocYMjlJR_IxTu9fr1Mh3_AHlsxoKA</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Tokdar, Surya T.</creator><creator>Kass, Robert E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201001</creationdate><title>Importance sampling: a review</title><author>Tokdar, Surya T. ; Kass, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3936-5dbd45fc8189a2f4a7a456f0f12ed0d5ff02e13af9301d1931533befe659a58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Approximation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Graphical methods</topic><topic>Importance sampling</topic><topic>Markov analysis</topic><topic>Markov chain sampling</topic><topic>Markov chains</topic><topic>Monte Carlo approximation</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Population (statistical)</topic><topic>Resampling</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Sequential sampling</topic><topic>Software</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokdar, Surya T.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokdar, Surya T.</au><au>Kass, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance sampling: a review</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><addtitle>WIREs Comp Stat</addtitle><date>2010-01</date><risdate>2010</risdate><volume>2</volume><issue>1</issue><spage>54</spage><epage>60</epage><pages>54-60</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>We provide a short overview of importance sampling—a popular sampling tool used for Monte Carlo computing. We discuss its mathematical foundation and properties that determine its accuracy in Monte Carlo approximations. We review the fundamental developments in designing efficient importance sampling (IS) for practical use. This includes parametric approximation with optimization‐based adaptation, sequential sampling with dynamic adaptation through resampling and population‐based approaches that make use of Markov chain sampling. Copyright © 2009 John Wiley & Sons, Inc.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/wics.56</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5108 |
ispartof | Wiley interdisciplinary reviews. Computational statistics, 2010-01, Vol.2 (1), p.54-60 |
issn | 1939-5108 1939-0068 |
language | eng |
recordid | cdi_proquest_journals_2008732337 |
source | Wiley Online Library All Journals |
subjects | Adaptation Approximation Data analysis Data processing Graphical methods Importance sampling Markov analysis Markov chain sampling Markov chains Monte Carlo approximation Monte Carlo simulation Optimization Population (statistical) Resampling Sampling Sampling methods Sampling techniques Sequential sampling Software Statistical methods |
title | Importance sampling: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20sampling:%20a%20review&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Tokdar,%20Surya%20T.&rft.date=2010-01&rft.volume=2&rft.issue=1&rft.spage=54&rft.epage=60&rft.pages=54-60&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.56&rft_dat=%3Cproquest_cross%3E2008732337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008732337&rft_id=info:pmid/&rfr_iscdi=true |