Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes
High-frequency sampled multivariate continuous time autoregressive moving average processes are investigated. We obtain asymptotic expansion for the spectral density of the sampled MCARMA process ( Y n Δ ) n ∈ Z as Δ ↓ 0 , where ( Y t ) t ∈ R is an MCARMA process. We show that the properly filtered...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2018-04, Vol.70 (2), p.467-487 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 2 |
container_start_page | 467 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 70 |
creator | Kevei, Péter |
description | High-frequency sampled multivariate continuous time autoregressive moving average processes are investigated. We obtain asymptotic expansion for the spectral density of the sampled MCARMA process
(
Y
n
Δ
)
n
∈
Z
as
Δ
↓
0
, where
(
Y
t
)
t
∈
R
is an MCARMA process. We show that the properly filtered process is a vector moving average process, and determine the asymptotic moving average representation of it, thus generalizing the univariate results to the multivariate model. The determination of the moving average representation of the filtered process, important for the analysis of high-frequency data, is difficult for any fixed positive
Δ
. However, the results established here provide a useful and insightful approximation when
Δ
is very small. |
doi_str_mv | 10.1007/s10463-017-0601-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008300930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008300930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-38c11c11c5148d62239a5ea4f5674a0a2541834df31c36aaf4952010900634ea3</originalsourceid><addsrcrecordid>eNp1kFlLAzEQx4MoWKsfwLeAz9GZHHs8LsULKoLocwjb2e2W7mGSFvrtTangkzAwMPyP4cfYLcI9AuQPAUFnSgDmAjJAYc7YDE0uRQlGnrMZgASh0uWSXYWwAQAllZwxW4VDP8UxdjXvx303tNztybuWuKfJU6AhutiNAx8bvu7atWg8fe9oqA88uH7a0or3u23s9s53LhJfVB9vFZ_8WFMIFK7ZReO2gW5-95x9PT1-Ll7E8v35dVEtRa0wi0IVNeJxDOpilUmpSmfI6cZkuXbgpNFYKL1qFNYqc67RpZGAUAJkSpNTc3Z3yk3N6b0Q7Wbc-SFVWglQKIBSQVLhSVX7MQRPjZ181zt_sAj2yNGeONrE0R45WpM88uQJSTu05P-S_zf9AN47dTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008300930</pqid></control><display><type>article</type><title>Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes</title><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kevei, Péter</creator><creatorcontrib>Kevei, Péter</creatorcontrib><description>High-frequency sampled multivariate continuous time autoregressive moving average processes are investigated. We obtain asymptotic expansion for the spectral density of the sampled MCARMA process
(
Y
n
Δ
)
n
∈
Z
as
Δ
↓
0
, where
(
Y
t
)
t
∈
R
is an MCARMA process. We show that the properly filtered process is a vector moving average process, and determine the asymptotic moving average representation of it, thus generalizing the univariate results to the multivariate model. The determination of the moving average representation of the filtered process, important for the analysis of high-frequency data, is difficult for any fixed positive
Δ
. However, the results established here provide a useful and insightful approximation when
Δ
is very small.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-017-0601-5</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Approximation ; Asymptotic properties ; Asymptotic series ; Autoregressive moving average ; Autoregressive processes ; Economics ; Eigenvalues ; Finance ; Insurance ; Investigations ; Management ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Representations ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2018-04, Vol.70 (2), p.467-487</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2017</rights><rights>Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-38c11c11c5148d62239a5ea4f5674a0a2541834df31c36aaf4952010900634ea3</citedby><cites>FETCH-LOGICAL-c316t-38c11c11c5148d62239a5ea4f5674a0a2541834df31c36aaf4952010900634ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-017-0601-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-017-0601-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kevei, Péter</creatorcontrib><title>Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>High-frequency sampled multivariate continuous time autoregressive moving average processes are investigated. We obtain asymptotic expansion for the spectral density of the sampled MCARMA process
(
Y
n
Δ
)
n
∈
Z
as
Δ
↓
0
, where
(
Y
t
)
t
∈
R
is an MCARMA process. We show that the properly filtered process is a vector moving average process, and determine the asymptotic moving average representation of it, thus generalizing the univariate results to the multivariate model. The determination of the moving average representation of the filtered process, important for the analysis of high-frequency data, is difficult for any fixed positive
Δ
. However, the results established here provide a useful and insightful approximation when
Δ
is very small.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>Autoregressive moving average</subject><subject>Autoregressive processes</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Finance</subject><subject>Insurance</subject><subject>Investigations</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Representations</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFlLAzEQx4MoWKsfwLeAz9GZHHs8LsULKoLocwjb2e2W7mGSFvrtTangkzAwMPyP4cfYLcI9AuQPAUFnSgDmAjJAYc7YDE0uRQlGnrMZgASh0uWSXYWwAQAllZwxW4VDP8UxdjXvx303tNztybuWuKfJU6AhutiNAx8bvu7atWg8fe9oqA88uH7a0or3u23s9s53LhJfVB9vFZ_8WFMIFK7ZReO2gW5-95x9PT1-Ll7E8v35dVEtRa0wi0IVNeJxDOpilUmpSmfI6cZkuXbgpNFYKL1qFNYqc67RpZGAUAJkSpNTc3Z3yk3N6b0Q7Wbc-SFVWglQKIBSQVLhSVX7MQRPjZ181zt_sAj2yNGeONrE0R45WpM88uQJSTu05P-S_zf9AN47dTE</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Kevei, Péter</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes</title><author>Kevei, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-38c11c11c5148d62239a5ea4f5674a0a2541834df31c36aaf4952010900634ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>Autoregressive moving average</topic><topic>Autoregressive processes</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Finance</topic><topic>Insurance</topic><topic>Investigations</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Representations</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevei, Péter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevei, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>70</volume><issue>2</issue><spage>467</spage><epage>487</epage><pages>467-487</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>High-frequency sampled multivariate continuous time autoregressive moving average processes are investigated. We obtain asymptotic expansion for the spectral density of the sampled MCARMA process
(
Y
n
Δ
)
n
∈
Z
as
Δ
↓
0
, where
(
Y
t
)
t
∈
R
is an MCARMA process. We show that the properly filtered process is a vector moving average process, and determine the asymptotic moving average representation of it, thus generalizing the univariate results to the multivariate model. The determination of the moving average representation of the filtered process, important for the analysis of high-frequency data, is difficult for any fixed positive
Δ
. However, the results established here provide a useful and insightful approximation when
Δ
is very small.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-017-0601-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2018-04, Vol.70 (2), p.467-487 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_proquest_journals_2008300930 |
source | Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Asymptotic properties Asymptotic series Autoregressive moving average Autoregressive processes Economics Eigenvalues Finance Insurance Investigations Management Mathematics Mathematics and Statistics Parameter estimation Representations Statistics Statistics for Business |
title | Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20moving%20average%20representation%20of%20high-frequency%20sampled%20multivariate%20CARMA%20processes&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Kevei,%20P%C3%A9ter&rft.date=2018-04-01&rft.volume=70&rft.issue=2&rft.spage=467&rft.epage=487&rft.pages=467-487&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-017-0601-5&rft_dat=%3Cproquest_cross%3E2008300930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008300930&rft_id=info:pmid/&rfr_iscdi=true |