Optimal reaction coordinates

The dynamic behavior of complex systems with many degrees of freedom is often analyzed by projection onto one or a few reaction coordinates. The dynamics is then described in a simple and intuitive way as diffusion on the associated free‐energy profile. In order to use such a picture for a quantitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational molecular science 2016-11, Vol.6 (6), p.748-763
Hauptverfasser: Banushkina, Polina V., Krivov, Sergei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 6
container_start_page 748
container_title Wiley interdisciplinary reviews. Computational molecular science
container_volume 6
creator Banushkina, Polina V.
Krivov, Sergei V.
description The dynamic behavior of complex systems with many degrees of freedom is often analyzed by projection onto one or a few reaction coordinates. The dynamics is then described in a simple and intuitive way as diffusion on the associated free‐energy profile. In order to use such a picture for a quantitative description of the dynamics one needs to select the coordinate in an optimal way so as to minimize non‐Markovian effects due to the projection. For equilibrium dynamics between two boundary states (e.g., a reaction), the optimal coordinate is known as the committor or the pfold coordinate in protein folding studies. While the dynamics projected on the committor is not Markovian, many important quantities of the original multidimensional dynamics on an arbitrarily complex landscape can be computed exactly. In this study, we summarize the derivation of this result, discuss different approaches to determine and validate the committor coordinate, and present three illustrative applications: protein folding, the game of chess, and patient recovery dynamics after kidney transplant. WIREs Comput Mol Sci 2016, 6:748–763. doi: 10.1002/wcms.1276 This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Theoretical and Physical Chemistry > Statistical Mechanics
doi_str_mv 10.1002/wcms.1276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008225057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008225057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4646-543b5d23a93161800fb8c4d2287408eb062ecb8a122f04bf867c5461f4e8c7bc3</originalsourceid><addsrcrecordid>eNp9kL1PAkEQxTdGEwlS2FuQWFkczM5-XmmIghHFoIZys7fsJYfA4e4R5L_3yBE6nWam-L15eY-Qawo9CoD9nVvFHkUlz0iLKpEmoDU_P91KXpJOjAuoh6cUGW2Rm8mmKlZ22Q3euqoo111XlmFerG3l4xW5yO0y-s5xt8nn48PHYJSMJ8Onwf04cVxymQjOMjFHZlNGJdUAeaYdnyNqxUH7DCR6l2lLEXPgWa6lcoJLmnOvncoca5Pb5u8mlN9bHyuzKLdhXVsaBNCIAoT6j6Ia09qKprqm7hrKhTLG4HOzCXXAsDcUzKElc2jJHFqq2X7D7oql3_8Nmtng5f2oSBpFESv_c1LY8GWkYkqY2evQzJR8nsq3qRmxXwkVdTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1829408198</pqid></control><display><type>article</type><title>Optimal reaction coordinates</title><source>Wiley Online Library (Online service)</source><creator>Banushkina, Polina V. ; Krivov, Sergei V.</creator><creatorcontrib>Banushkina, Polina V. ; Krivov, Sergei V.</creatorcontrib><description>The dynamic behavior of complex systems with many degrees of freedom is often analyzed by projection onto one or a few reaction coordinates. The dynamics is then described in a simple and intuitive way as diffusion on the associated free‐energy profile. In order to use such a picture for a quantitative description of the dynamics one needs to select the coordinate in an optimal way so as to minimize non‐Markovian effects due to the projection. For equilibrium dynamics between two boundary states (e.g., a reaction), the optimal coordinate is known as the committor or the pfold coordinate in protein folding studies. While the dynamics projected on the committor is not Markovian, many important quantities of the original multidimensional dynamics on an arbitrarily complex landscape can be computed exactly. In this study, we summarize the derivation of this result, discuss different approaches to determine and validate the committor coordinate, and present three illustrative applications: protein folding, the game of chess, and patient recovery dynamics after kidney transplant. WIREs Comput Mol Sci 2016, 6:748–763. doi: 10.1002/wcms.1276 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Theoretical and Physical Chemistry &gt; Reaction Dynamics and Kinetics Theoretical and Physical Chemistry &gt; Statistical Mechanics</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1276</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Biophysics ; Chess ; Complex systems ; Computer applications ; Dye dispersion ; Dynamics ; Folding ; Kidney transplantation ; Kinetics ; Markov processes ; Mechanics ; Physical chemistry ; Protein folding ; Proteins ; Reaction kinetics ; Statistical mechanics</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2016-11, Vol.6 (6), p.748-763</ispartof><rights>2016 John Wiley &amp; Sons, Ltd</rights><rights>2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4646-543b5d23a93161800fb8c4d2287408eb062ecb8a122f04bf867c5461f4e8c7bc3</citedby><cites>FETCH-LOGICAL-c4646-543b5d23a93161800fb8c4d2287408eb062ecb8a122f04bf867c5461f4e8c7bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1276$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1276$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Banushkina, Polina V.</creatorcontrib><creatorcontrib>Krivov, Sergei V.</creatorcontrib><title>Optimal reaction coordinates</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><addtitle>WIREs Comput Mol Sci</addtitle><description>The dynamic behavior of complex systems with many degrees of freedom is often analyzed by projection onto one or a few reaction coordinates. The dynamics is then described in a simple and intuitive way as diffusion on the associated free‐energy profile. In order to use such a picture for a quantitative description of the dynamics one needs to select the coordinate in an optimal way so as to minimize non‐Markovian effects due to the projection. For equilibrium dynamics between two boundary states (e.g., a reaction), the optimal coordinate is known as the committor or the pfold coordinate in protein folding studies. While the dynamics projected on the committor is not Markovian, many important quantities of the original multidimensional dynamics on an arbitrarily complex landscape can be computed exactly. In this study, we summarize the derivation of this result, discuss different approaches to determine and validate the committor coordinate, and present three illustrative applications: protein folding, the game of chess, and patient recovery dynamics after kidney transplant. WIREs Comput Mol Sci 2016, 6:748–763. doi: 10.1002/wcms.1276 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Theoretical and Physical Chemistry &gt; Reaction Dynamics and Kinetics Theoretical and Physical Chemistry &gt; Statistical Mechanics</description><subject>Biophysics</subject><subject>Chess</subject><subject>Complex systems</subject><subject>Computer applications</subject><subject>Dye dispersion</subject><subject>Dynamics</subject><subject>Folding</subject><subject>Kidney transplantation</subject><subject>Kinetics</subject><subject>Markov processes</subject><subject>Mechanics</subject><subject>Physical chemistry</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Statistical mechanics</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PAkEQxTdGEwlS2FuQWFkczM5-XmmIghHFoIZys7fsJYfA4e4R5L_3yBE6nWam-L15eY-Qawo9CoD9nVvFHkUlz0iLKpEmoDU_P91KXpJOjAuoh6cUGW2Rm8mmKlZ22Q3euqoo111XlmFerG3l4xW5yO0y-s5xt8nn48PHYJSMJ8Onwf04cVxymQjOMjFHZlNGJdUAeaYdnyNqxUH7DCR6l2lLEXPgWa6lcoJLmnOvncoca5Pb5u8mlN9bHyuzKLdhXVsaBNCIAoT6j6Ia09qKprqm7hrKhTLG4HOzCXXAsDcUzKElc2jJHFqq2X7D7oql3_8Nmtng5f2oSBpFESv_c1LY8GWkYkqY2evQzJR8nsq3qRmxXwkVdTg</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Banushkina, Polina V.</creator><creator>Krivov, Sergei V.</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201611</creationdate><title>Optimal reaction coordinates</title><author>Banushkina, Polina V. ; Krivov, Sergei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4646-543b5d23a93161800fb8c4d2287408eb062ecb8a122f04bf867c5461f4e8c7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biophysics</topic><topic>Chess</topic><topic>Complex systems</topic><topic>Computer applications</topic><topic>Dye dispersion</topic><topic>Dynamics</topic><topic>Folding</topic><topic>Kidney transplantation</topic><topic>Kinetics</topic><topic>Markov processes</topic><topic>Mechanics</topic><topic>Physical chemistry</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banushkina, Polina V.</creatorcontrib><creatorcontrib>Krivov, Sergei V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banushkina, Polina V.</au><au>Krivov, Sergei V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal reaction coordinates</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><addtitle>WIREs Comput Mol Sci</addtitle><date>2016-11</date><risdate>2016</risdate><volume>6</volume><issue>6</issue><spage>748</spage><epage>763</epage><pages>748-763</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>The dynamic behavior of complex systems with many degrees of freedom is often analyzed by projection onto one or a few reaction coordinates. The dynamics is then described in a simple and intuitive way as diffusion on the associated free‐energy profile. In order to use such a picture for a quantitative description of the dynamics one needs to select the coordinate in an optimal way so as to minimize non‐Markovian effects due to the projection. For equilibrium dynamics between two boundary states (e.g., a reaction), the optimal coordinate is known as the committor or the pfold coordinate in protein folding studies. While the dynamics projected on the committor is not Markovian, many important quantities of the original multidimensional dynamics on an arbitrarily complex landscape can be computed exactly. In this study, we summarize the derivation of this result, discuss different approaches to determine and validate the committor coordinate, and present three illustrative applications: protein folding, the game of chess, and patient recovery dynamics after kidney transplant. WIREs Comput Mol Sci 2016, 6:748–763. doi: 10.1002/wcms.1276 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Theoretical and Physical Chemistry &gt; Reaction Dynamics and Kinetics Theoretical and Physical Chemistry &gt; Statistical Mechanics</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1276</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-0876
ispartof Wiley interdisciplinary reviews. Computational molecular science, 2016-11, Vol.6 (6), p.748-763
issn 1759-0876
1759-0884
language eng
recordid cdi_proquest_journals_2008225057
source Wiley Online Library (Online service)
subjects Biophysics
Chess
Complex systems
Computer applications
Dye dispersion
Dynamics
Folding
Kidney transplantation
Kinetics
Markov processes
Mechanics
Physical chemistry
Protein folding
Proteins
Reaction kinetics
Statistical mechanics
title Optimal reaction coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20reaction%20coordinates&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Banushkina,%20Polina%20V.&rft.date=2016-11&rft.volume=6&rft.issue=6&rft.spage=748&rft.epage=763&rft.pages=748-763&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1276&rft_dat=%3Cproquest_cross%3E2008225057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1829408198&rft_id=info:pmid/&rfr_iscdi=true