Testing slope effect on flow resistance equation for mobile bed rills

In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2018-02, Vol.32 (5), p.664-671
Hauptverfasser: Di Stefano, Costanza, Ferro, Vito, Palmeri, Vincenzo, Pampalone, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 5
container_start_page 664
container_title Hydrological processes
container_volume 32
creator Di Stefano, Costanza
Ferro, Vito
Palmeri, Vincenzo
Pampalone, Vincenzo
description In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.
doi_str_mv 10.1002/hyp.11448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008164747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008164747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3558-ec477f30e10a015dc609f9de2414afdf513ba4b6675d097eb51a7dd1becb36923</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjSXid27IyoKhSpEgxlYLLs2IZUaZzaqaq-PS5hZbrDd-7fQeiewIwA5PPvUz8jhFJxgSYEqiojINglmoAQLCtB8Gt0E-MWACgImKDlxsah6b5wbH1vsXXO1gP2HXatP-JgYxMH1dUp2R_U0JwDH_DO66a1WFuDQ9O28RZdOdVGe_dXp-jjeblZrLL128vr4mmdqYIxkdmacu4KsAQUEGbqEipXGZtTQpUzjpFCK6rLkjMDFbeaEcWNIdrWuiirvJiih3FuH_z-kC6XW38IXVopcwBBSsopT9TjSNXBxxisk31odiqcJAF5tiSTJflrKbHzkT2mh07_g3L1-T52_AA-yWj6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008164747</pqid></control><display><type>article</type><title>Testing slope effect on flow resistance equation for mobile bed rills</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Di Stefano, Costanza ; Ferro, Vito ; Palmeri, Vincenzo ; Pampalone, Vincenzo</creator><creatorcontrib>Di Stefano, Costanza ; Ferro, Vito ; Palmeri, Vincenzo ; Pampalone, Vincenzo</creatorcontrib><description>In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.11448</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Darcy-weisbach equation ; Flow resistance ; Flow velocity ; Friction factor ; Froude number ; Mathematical models ; plot measurements ; rill hydraulics ; Rills ; Slope ; Slopes ; soil erosion ; Velocity ; Velocity distribution ; velocity profile ; Water depth</subject><ispartof>Hydrological processes, 2018-02, Vol.32 (5), p.664-671</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3558-ec477f30e10a015dc609f9de2414afdf513ba4b6675d097eb51a7dd1becb36923</citedby><cites>FETCH-LOGICAL-a3558-ec477f30e10a015dc609f9de2414afdf513ba4b6675d097eb51a7dd1becb36923</cites><orcidid>0000-0003-3020-3119 ; 0000-0002-5195-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.11448$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.11448$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><title>Testing slope effect on flow resistance equation for mobile bed rills</title><title>Hydrological processes</title><description>In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.</description><subject>Darcy-weisbach equation</subject><subject>Flow resistance</subject><subject>Flow velocity</subject><subject>Friction factor</subject><subject>Froude number</subject><subject>Mathematical models</subject><subject>plot measurements</subject><subject>rill hydraulics</subject><subject>Rills</subject><subject>Slope</subject><subject>Slopes</subject><subject>soil erosion</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>velocity profile</subject><subject>Water depth</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjSXid27IyoKhSpEgxlYLLs2IZUaZzaqaq-PS5hZbrDd-7fQeiewIwA5PPvUz8jhFJxgSYEqiojINglmoAQLCtB8Gt0E-MWACgImKDlxsah6b5wbH1vsXXO1gP2HXatP-JgYxMH1dUp2R_U0JwDH_DO66a1WFuDQ9O28RZdOdVGe_dXp-jjeblZrLL128vr4mmdqYIxkdmacu4KsAQUEGbqEipXGZtTQpUzjpFCK6rLkjMDFbeaEcWNIdrWuiirvJiih3FuH_z-kC6XW38IXVopcwBBSsopT9TjSNXBxxisk31odiqcJAF5tiSTJflrKbHzkT2mh07_g3L1-T52_AA-yWj6</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Di Stefano, Costanza</creator><creator>Ferro, Vito</creator><creator>Palmeri, Vincenzo</creator><creator>Pampalone, Vincenzo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid></search><sort><creationdate>20180228</creationdate><title>Testing slope effect on flow resistance equation for mobile bed rills</title><author>Di Stefano, Costanza ; Ferro, Vito ; Palmeri, Vincenzo ; Pampalone, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3558-ec477f30e10a015dc609f9de2414afdf513ba4b6675d097eb51a7dd1becb36923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Darcy-weisbach equation</topic><topic>Flow resistance</topic><topic>Flow velocity</topic><topic>Friction factor</topic><topic>Froude number</topic><topic>Mathematical models</topic><topic>plot measurements</topic><topic>rill hydraulics</topic><topic>Rills</topic><topic>Slope</topic><topic>Slopes</topic><topic>soil erosion</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>velocity profile</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, Costanza</au><au>Ferro, Vito</au><au>Palmeri, Vincenzo</au><au>Pampalone, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing slope effect on flow resistance equation for mobile bed rills</atitle><jtitle>Hydrological processes</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>32</volume><issue>5</issue><spage>664</spage><epage>671</epage><pages>664-671</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hyp.11448</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2018-02, Vol.32 (5), p.664-671
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_2008164747
source Wiley Online Library Journals Frontfile Complete
subjects Darcy-weisbach equation
Flow resistance
Flow velocity
Friction factor
Froude number
Mathematical models
plot measurements
rill hydraulics
Rills
Slope
Slopes
soil erosion
Velocity
Velocity distribution
velocity profile
Water depth
title Testing slope effect on flow resistance equation for mobile bed rills
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20slope%20effect%20on%20flow%20resistance%20equation%20for%20mobile%20bed%20rills&rft.jtitle=Hydrological%20processes&rft.au=Di%20Stefano,%20Costanza&rft.date=2018-02-28&rft.volume=32&rft.issue=5&rft.spage=664&rft.epage=671&rft.pages=664-671&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.11448&rft_dat=%3Cproquest_cross%3E2008164747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008164747&rft_id=info:pmid/&rfr_iscdi=true