FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data

Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2015-01, Vol.2015 (2015), p.1-18
Hauptverfasser: Ying, Jing, Wu, Ming-hui, Liu, Ze-min, Jin, Cang-hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 2015
container_start_page 1
container_title Mobile information systems
container_volume 2015
creator Ying, Jing
Wu, Ming-hui
Liu, Ze-min
Jin, Cang-hong
description Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.
doi_str_mv 10.1155/2015/818307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008022692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008022692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pybsUvCl1Sdo0qTfZVhU2FKawi5TXLNHMrplJt-F_b0Y9ePP0vcPvvQcfQucE3xDC2IBiwgaCiATzA9QjgrM4x2x-GGbG0xgTPj9GJ94vMc5wwngPvRXg26K2u9torLWRRjVtNJNQQ1WraGoXqo5HzmxVExUOVmpn3WekrYuenZXKe9O8R1MIud3ryoSlWesUrKIRtHCKjjTUXp39Zh-9FuOX4UM8ebp_HN5NYpmwrI1BhuSMiErKPKGKUqrwAmtRCZ3RNAVYMJKLVEjAlOicAGRUYqkEr9JMV0kfXXZ3185-bZRvy6XduCa8LCnGAlOa5TSo605JZ713SpdrZ1bgvkuCy31_5b6_susv6KtOf5hmATvzD77osApEafiDOeU8T34A9Fx48w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008022692</pqid></control><display><type>article</type><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong</creator><contributor>Yang, Laurence T. ; Laurence T Yang</contributor><creatorcontrib>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong ; Yang, Laurence T. ; Laurence T Yang</creatorcontrib><description>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2015/818307</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computing time ; Data mining ; Data processing ; Queries</subject><ispartof>Mobile information systems, 2015-01, Vol.2015 (2015), p.1-18</ispartof><rights>Copyright © 2015 Cang-hong Jin et al.</rights><rights>Copyright © 2015 Cang-hong Jin et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</citedby><cites>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yang, Laurence T.</contributor><contributor>Laurence T Yang</contributor><creatorcontrib>Ying, Jing</creatorcontrib><creatorcontrib>Wu, Ming-hui</creatorcontrib><creatorcontrib>Liu, Ze-min</creatorcontrib><creatorcontrib>Jin, Cang-hong</creatorcontrib><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><title>Mobile information systems</title><description>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</description><subject>Computing time</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Queries</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pybsUvCl1Sdo0qTfZVhU2FKawi5TXLNHMrplJt-F_b0Y9ePP0vcPvvQcfQucE3xDC2IBiwgaCiATzA9QjgrM4x2x-GGbG0xgTPj9GJ94vMc5wwngPvRXg26K2u9torLWRRjVtNJNQQ1WraGoXqo5HzmxVExUOVmpn3WekrYuenZXKe9O8R1MIud3ryoSlWesUrKIRtHCKjjTUXp39Zh-9FuOX4UM8ebp_HN5NYpmwrI1BhuSMiErKPKGKUqrwAmtRCZ3RNAVYMJKLVEjAlOicAGRUYqkEr9JMV0kfXXZ3185-bZRvy6XduCa8LCnGAlOa5TSo605JZ713SpdrZ1bgvkuCy31_5b6_susv6KtOf5hmATvzD77osApEafiDOeU8T34A9Fx48w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ying, Jing</creator><creator>Wu, Ming-hui</creator><creator>Liu, Ze-min</creator><creator>Jin, Cang-hong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><author>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computing time</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Queries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Jing</creatorcontrib><creatorcontrib>Wu, Ming-hui</creatorcontrib><creatorcontrib>Liu, Ze-min</creatorcontrib><creatorcontrib>Jin, Cang-hong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Jing</au><au>Wu, Ming-hui</au><au>Liu, Ze-min</au><au>Jin, Cang-hong</au><au>Yang, Laurence T.</au><au>Laurence T Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</atitle><jtitle>Mobile information systems</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/818307</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2015-01, Vol.2015 (2015), p.1-18
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2008022692
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Computing time
Data mining
Data processing
Queries
title FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FastFlow:%20Efficient%20Scalable%20Model-Driven%20Framework%20for%20Processing%20Massive%20Mobile%20Stream%20Data&rft.jtitle=Mobile%20information%20systems&rft.au=Ying,%20Jing&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2015/818307&rft_dat=%3Cproquest_cross%3E2008022692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008022692&rft_id=info:pmid/&rfr_iscdi=true