FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data
Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interacti...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2015-01, Vol.2015 (2015), p.1-18 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2015 |
creator | Ying, Jing Wu, Ming-hui Liu, Ze-min Jin, Cang-hong |
description | Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently. |
doi_str_mv | 10.1155/2015/818307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008022692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008022692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pybsUvCl1Sdo0qTfZVhU2FKawi5TXLNHMrplJt-F_b0Y9ePP0vcPvvQcfQucE3xDC2IBiwgaCiATzA9QjgrM4x2x-GGbG0xgTPj9GJ94vMc5wwngPvRXg26K2u9torLWRRjVtNJNQQ1WraGoXqo5HzmxVExUOVmpn3WekrYuenZXKe9O8R1MIud3ryoSlWesUrKIRtHCKjjTUXp39Zh-9FuOX4UM8ebp_HN5NYpmwrI1BhuSMiErKPKGKUqrwAmtRCZ3RNAVYMJKLVEjAlOicAGRUYqkEr9JMV0kfXXZ3185-bZRvy6XduCa8LCnGAlOa5TSo605JZ713SpdrZ1bgvkuCy31_5b6_susv6KtOf5hmATvzD77osApEafiDOeU8T34A9Fx48w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008022692</pqid></control><display><type>article</type><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong</creator><contributor>Yang, Laurence T. ; Laurence T Yang</contributor><creatorcontrib>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong ; Yang, Laurence T. ; Laurence T Yang</creatorcontrib><description>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2015/818307</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computing time ; Data mining ; Data processing ; Queries</subject><ispartof>Mobile information systems, 2015-01, Vol.2015 (2015), p.1-18</ispartof><rights>Copyright © 2015 Cang-hong Jin et al.</rights><rights>Copyright © 2015 Cang-hong Jin et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</citedby><cites>FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yang, Laurence T.</contributor><contributor>Laurence T Yang</contributor><creatorcontrib>Ying, Jing</creatorcontrib><creatorcontrib>Wu, Ming-hui</creatorcontrib><creatorcontrib>Liu, Ze-min</creatorcontrib><creatorcontrib>Jin, Cang-hong</creatorcontrib><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><title>Mobile information systems</title><description>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</description><subject>Computing time</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Queries</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pybsUvCl1Sdo0qTfZVhU2FKawi5TXLNHMrplJt-F_b0Y9ePP0vcPvvQcfQucE3xDC2IBiwgaCiATzA9QjgrM4x2x-GGbG0xgTPj9GJ94vMc5wwngPvRXg26K2u9torLWRRjVtNJNQQ1WraGoXqo5HzmxVExUOVmpn3WekrYuenZXKe9O8R1MIud3ryoSlWesUrKIRtHCKjjTUXp39Zh-9FuOX4UM8ebp_HN5NYpmwrI1BhuSMiErKPKGKUqrwAmtRCZ3RNAVYMJKLVEjAlOicAGRUYqkEr9JMV0kfXXZ3185-bZRvy6XduCa8LCnGAlOa5TSo605JZ713SpdrZ1bgvkuCy31_5b6_susv6KtOf5hmATvzD77osApEafiDOeU8T34A9Fx48w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ying, Jing</creator><creator>Wu, Ming-hui</creator><creator>Liu, Ze-min</creator><creator>Jin, Cang-hong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</title><author>Ying, Jing ; Wu, Ming-hui ; Liu, Ze-min ; Jin, Cang-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-acc357518bcc932e222e0d0f8b8f6244aad519848ca021f91aa62c0ce87b46fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computing time</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Queries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Jing</creatorcontrib><creatorcontrib>Wu, Ming-hui</creatorcontrib><creatorcontrib>Liu, Ze-min</creatorcontrib><creatorcontrib>Jin, Cang-hong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Jing</au><au>Wu, Ming-hui</au><au>Liu, Ze-min</au><au>Jin, Cang-hong</au><au>Yang, Laurence T.</au><au>Laurence T Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data</atitle><jtitle>Mobile information systems</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Massive stream data mining and computing require dealing with an infinite sequence of data items with low latency. As far as we know, current Stream Processing Engines (SPEs) cannot handle massive stream data efficiently due to their inability of horizontal computation modeling and lack of interactive query. In this paper, we detail the challenges of stream data processing and introduce FastFlow, a model-driven infrastructure. FastFlow differs from other existing SPEs in terms of its user-friendly interface, support of complex operators, heterogeneous outputs, extensible computing model, and real-time deployment. Further, FastFlow includes optimizers to reorganize the execution topology for batch query to reduce resource cost rather than executing each query independently.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/818307</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2015-01, Vol.2015 (2015), p.1-18 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2008022692 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Computing time Data mining Data processing Queries |
title | FastFlow: Efficient Scalable Model-Driven Framework for Processing Massive Mobile Stream Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FastFlow:%20Efficient%20Scalable%20Model-Driven%20Framework%20for%20Processing%20Massive%20Mobile%20Stream%20Data&rft.jtitle=Mobile%20information%20systems&rft.au=Ying,%20Jing&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2015/818307&rft_dat=%3Cproquest_cross%3E2008022692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008022692&rft_id=info:pmid/&rfr_iscdi=true |