Introduction to manifold learning
A popular research area today in statistics and machine learning is that of manifold learning, which is related to the algorithmic techniques of dimensionality reduction. Manifold learning can be divided into linear and nonlinear methods. Linear methods, which have long been part of the statistician...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational statistics 2012-09, Vol.4 (5), p.439-446 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 5 |
container_start_page | 439 |
container_title | Wiley interdisciplinary reviews. Computational statistics |
container_volume | 4 |
creator | Izenman, Alan Julian |
description | A popular research area today in statistics and machine learning is that of manifold learning, which is related to the algorithmic techniques of dimensionality reduction. Manifold learning can be divided into linear and nonlinear methods. Linear methods, which have long been part of the statistician's toolbox for analyzing multivariate data, include principal component analysis (PCA) and multidimensional scaling (MDS). Recently, there has been a flurry of research activity on nonlinear manifold learning, which includes Isomap, local linear embedding, Laplacian eigenmaps, Hessian eigenmaps, and diffusion maps. Some of these techniques are nonlinear generalizations of the linear methods. The algorithmic process of most of these techniques consists of three steps: a nearest‐neighbor search, a definition of distances or affinities between points (a key ingredient for the success of these methods), and an eigenproblem for embedding high‐dimensional points into a lower dimensional space. This article gives us a brief survey of these new methods and indicates their strengths and weaknesses. WIREs Comput Stat 2012 doi: 10.1002/wics.1222
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Dimension Reduction
Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning
Statistical and Graphical Methods of Data Analysis > Multivariate Analysis |
doi_str_mv | 10.1002/wics.1222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007960868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007960868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-e6c8ef336b936d9e533f360e4a68a99f94c6b1cb1a0502eba6996005cb9a37b03</originalsourceid><addsrcrecordid>eNp1kMFOAjEQhhujiYgefAOMJw8L085ud3s0gEhC9IBKwqXplq4pLltslyBv75Il3swcZjL5_pnkI-SWQp8CsMHe6tCnjLEz0qECRQTAs_PTnFDILslVCOtmmzbVIXfTqvZutdO1dVWvdr2NqmzhylWvNMpXtvq8JheFKoO5OfUueX8avw2fo9nrZDp8nEUaMWGR4TozBSLPBfKVMAligRxMrHimhChErHlOdU4VJMBMrrgQHCDRuVCY5oBdct_e3Xr3vTOhlmu381XzUjKAtIEznjXUQ0tp70LwppBbbzfKHyQFeTQgjwbk0UDDDlp2b0tz-B-Ui-lwfkpEbcKG2vz8JZT_kjzFNJGLl4mcL0fLePExkjH-ApbRazE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007960868</pqid></control><display><type>article</type><title>Introduction to manifold learning</title><source>Wiley Online Library All Journals</source><creator>Izenman, Alan Julian</creator><creatorcontrib>Izenman, Alan Julian</creatorcontrib><description>A popular research area today in statistics and machine learning is that of manifold learning, which is related to the algorithmic techniques of dimensionality reduction. Manifold learning can be divided into linear and nonlinear methods. Linear methods, which have long been part of the statistician's toolbox for analyzing multivariate data, include principal component analysis (PCA) and multidimensional scaling (MDS). Recently, there has been a flurry of research activity on nonlinear manifold learning, which includes Isomap, local linear embedding, Laplacian eigenmaps, Hessian eigenmaps, and diffusion maps. Some of these techniques are nonlinear generalizations of the linear methods. The algorithmic process of most of these techniques consists of three steps: a nearest‐neighbor search, a definition of distances or affinities between points (a key ingredient for the success of these methods), and an eigenproblem for embedding high‐dimensional points into a lower dimensional space. This article gives us a brief survey of these new methods and indicates their strengths and weaknesses. WIREs Comput Stat 2012 doi: 10.1002/wics.1222
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Dimension Reduction
Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning
Statistical and Graphical Methods of Data Analysis > Multivariate Analysis</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1222</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Data ; Data analysis ; Data processing ; diffusion maps ; dimensionality reduction ; Dye dispersion ; Embedding ; Graphical methods ; Isomap ; Laplacian eigenmaps ; Learning algorithms ; local linear embedding ; Machine learning ; Manifolds ; Manifolds (mathematics) ; Multidimensional scaling ; Multivariate analysis ; Principal components analysis ; Reduction ; Scaling ; Statistical analysis ; Statistical methods ; Statistics ; Surveying</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2012-09, Vol.4 (5), p.439-446</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Sep/Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3352-e6c8ef336b936d9e533f360e4a68a99f94c6b1cb1a0502eba6996005cb9a37b03</citedby><cites>FETCH-LOGICAL-c3352-e6c8ef336b936d9e533f360e4a68a99f94c6b1cb1a0502eba6996005cb9a37b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Izenman, Alan Julian</creatorcontrib><title>Introduction to manifold learning</title><title>Wiley interdisciplinary reviews. Computational statistics</title><addtitle>WIREs Comp Stat</addtitle><description>A popular research area today in statistics and machine learning is that of manifold learning, which is related to the algorithmic techniques of dimensionality reduction. Manifold learning can be divided into linear and nonlinear methods. Linear methods, which have long been part of the statistician's toolbox for analyzing multivariate data, include principal component analysis (PCA) and multidimensional scaling (MDS). Recently, there has been a flurry of research activity on nonlinear manifold learning, which includes Isomap, local linear embedding, Laplacian eigenmaps, Hessian eigenmaps, and diffusion maps. Some of these techniques are nonlinear generalizations of the linear methods. The algorithmic process of most of these techniques consists of three steps: a nearest‐neighbor search, a definition of distances or affinities between points (a key ingredient for the success of these methods), and an eigenproblem for embedding high‐dimensional points into a lower dimensional space. This article gives us a brief survey of these new methods and indicates their strengths and weaknesses. WIREs Comput Stat 2012 doi: 10.1002/wics.1222
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Dimension Reduction
Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning
Statistical and Graphical Methods of Data Analysis > Multivariate Analysis</description><subject>Data</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>diffusion maps</subject><subject>dimensionality reduction</subject><subject>Dye dispersion</subject><subject>Embedding</subject><subject>Graphical methods</subject><subject>Isomap</subject><subject>Laplacian eigenmaps</subject><subject>Learning algorithms</subject><subject>local linear embedding</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Multidimensional scaling</subject><subject>Multivariate analysis</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Scaling</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Surveying</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEQhhujiYgefAOMJw8L085ud3s0gEhC9IBKwqXplq4pLltslyBv75Il3swcZjL5_pnkI-SWQp8CsMHe6tCnjLEz0qECRQTAs_PTnFDILslVCOtmmzbVIXfTqvZutdO1dVWvdr2NqmzhylWvNMpXtvq8JheFKoO5OfUueX8avw2fo9nrZDp8nEUaMWGR4TozBSLPBfKVMAligRxMrHimhChErHlOdU4VJMBMrrgQHCDRuVCY5oBdct_e3Xr3vTOhlmu381XzUjKAtIEznjXUQ0tp70LwppBbbzfKHyQFeTQgjwbk0UDDDlp2b0tz-B-Ui-lwfkpEbcKG2vz8JZT_kjzFNJGLl4mcL0fLePExkjH-ApbRazE</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Izenman, Alan Julian</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201209</creationdate><title>Introduction to manifold learning</title><author>Izenman, Alan Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-e6c8ef336b936d9e533f360e4a68a99f94c6b1cb1a0502eba6996005cb9a37b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>diffusion maps</topic><topic>dimensionality reduction</topic><topic>Dye dispersion</topic><topic>Embedding</topic><topic>Graphical methods</topic><topic>Isomap</topic><topic>Laplacian eigenmaps</topic><topic>Learning algorithms</topic><topic>local linear embedding</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Multidimensional scaling</topic><topic>Multivariate analysis</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Scaling</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izenman, Alan Julian</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izenman, Alan Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to manifold learning</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><addtitle>WIREs Comp Stat</addtitle><date>2012-09</date><risdate>2012</risdate><volume>4</volume><issue>5</issue><spage>439</spage><epage>446</epage><pages>439-446</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>A popular research area today in statistics and machine learning is that of manifold learning, which is related to the algorithmic techniques of dimensionality reduction. Manifold learning can be divided into linear and nonlinear methods. Linear methods, which have long been part of the statistician's toolbox for analyzing multivariate data, include principal component analysis (PCA) and multidimensional scaling (MDS). Recently, there has been a flurry of research activity on nonlinear manifold learning, which includes Isomap, local linear embedding, Laplacian eigenmaps, Hessian eigenmaps, and diffusion maps. Some of these techniques are nonlinear generalizations of the linear methods. The algorithmic process of most of these techniques consists of three steps: a nearest‐neighbor search, a definition of distances or affinities between points (a key ingredient for the success of these methods), and an eigenproblem for embedding high‐dimensional points into a lower dimensional space. This article gives us a brief survey of these new methods and indicates their strengths and weaknesses. WIREs Comput Stat 2012 doi: 10.1002/wics.1222
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Dimension Reduction
Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning
Statistical and Graphical Methods of Data Analysis > Multivariate Analysis</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/wics.1222</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5108 |
ispartof | Wiley interdisciplinary reviews. Computational statistics, 2012-09, Vol.4 (5), p.439-446 |
issn | 1939-5108 1939-0068 |
language | eng |
recordid | cdi_proquest_journals_2007960868 |
source | Wiley Online Library All Journals |
subjects | Data Data analysis Data processing diffusion maps dimensionality reduction Dye dispersion Embedding Graphical methods Isomap Laplacian eigenmaps Learning algorithms local linear embedding Machine learning Manifolds Manifolds (mathematics) Multidimensional scaling Multivariate analysis Principal components analysis Reduction Scaling Statistical analysis Statistical methods Statistics Surveying |
title | Introduction to manifold learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20manifold%20learning&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Izenman,%20Alan%20Julian&rft.date=2012-09&rft.volume=4&rft.issue=5&rft.spage=439&rft.epage=446&rft.pages=439-446&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1222&rft_dat=%3Cproquest_cross%3E2007960868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007960868&rft_id=info:pmid/&rfr_iscdi=true |