Set regularities and feasibility problems
We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2018-03, Vol.168 (1-2), p.279-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 1-2 |
container_start_page | 279 |
container_title | Mathematical programming |
container_volume | 168 |
creator | Kruger, Alexander Y. Luke, D. Russell Thao, Nguyen H. |
description | We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms. |
doi_str_mv | 10.1007/s10107-016-1039-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007798142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007798142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR9zKZZGYpRatQcKGuQ5LJK1OmHyZTaP-9KSO4cvU2597LO4zdIjwggH5MCAiaAyqOUDb8cMYmKEvFpZLqnE0ARMUrhXDJrlJaAQCWdT1h9x9hKGJY7nsbu6ELqbCbtqBgU-e6vhuOxS5uXR_W6ZpdkO1TuPm9U_b18vw5e-WL9_nb7GnBfYlq4MJLW1upNQVw2itqq4aAWvKkQiOc1q21bYV17ZyX6CQp4RuSUAnSLUE5ZXdjbx7-3oc0mNV2Hzd50oj8qW5qlCJTOFI-blOKgcwudmsbjwbBnIyY0YjJRszJiDnkjBgzKbObZYh_zf-HfgAZVWQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007798142</pqid></control><display><type>article</type><title>Set regularities and feasibility problems</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</creator><creatorcontrib>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</creatorcontrib><description>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-016-1039-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convergence ; Euclidean space ; Feasibility ; Full Length Paper ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Projectors ; Theoretical</subject><ispartof>Mathematical programming, 2018-03, Vol.168 (1-2), p.279-311</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016</rights><rights>Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</citedby><cites>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</cites><orcidid>0000-0002-4508-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-016-1039-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-016-1039-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><creatorcontrib>Thao, Nguyen H.</creatorcontrib><title>Set regularities and feasibility problems</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convergence</subject><subject>Euclidean space</subject><subject>Feasibility</subject><subject>Full Length Paper</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Projectors</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR9zKZZGYpRatQcKGuQ5LJK1OmHyZTaP-9KSO4cvU2597LO4zdIjwggH5MCAiaAyqOUDb8cMYmKEvFpZLqnE0ARMUrhXDJrlJaAQCWdT1h9x9hKGJY7nsbu6ELqbCbtqBgU-e6vhuOxS5uXR_W6ZpdkO1TuPm9U_b18vw5e-WL9_nb7GnBfYlq4MJLW1upNQVw2itqq4aAWvKkQiOc1q21bYV17ZyX6CQp4RuSUAnSLUE5ZXdjbx7-3oc0mNV2Hzd50oj8qW5qlCJTOFI-blOKgcwudmsbjwbBnIyY0YjJRszJiDnkjBgzKbObZYh_zf-HfgAZVWQV</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kruger, Alexander Y.</creator><creator>Luke, D. Russell</creator><creator>Thao, Nguyen H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid></search><sort><creationdate>20180301</creationdate><title>Set regularities and feasibility problems</title><author>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convergence</topic><topic>Euclidean space</topic><topic>Feasibility</topic><topic>Full Length Paper</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Projectors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><creatorcontrib>Thao, Nguyen H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruger, Alexander Y.</au><au>Luke, D. Russell</au><au>Thao, Nguyen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set regularities and feasibility problems</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>168</volume><issue>1-2</issue><spage>279</spage><epage>311</epage><pages>279-311</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-016-1039-x</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2018-03, Vol.168 (1-2), p.279-311 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2007798142 |
source | SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorics Convergence Euclidean space Feasibility Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Projectors Theoretical |
title | Set regularities and feasibility problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set%20regularities%20and%20feasibility%20problems&rft.jtitle=Mathematical%20programming&rft.au=Kruger,%20Alexander%20Y.&rft.date=2018-03-01&rft.volume=168&rft.issue=1-2&rft.spage=279&rft.epage=311&rft.pages=279-311&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-016-1039-x&rft_dat=%3Cproquest_cross%3E2007798142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007798142&rft_id=info:pmid/&rfr_iscdi=true |