Set regularities and feasibility problems

We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2018-03, Vol.168 (1-2), p.279-311
Hauptverfasser: Kruger, Alexander Y., Luke, D. Russell, Thao, Nguyen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 1-2
container_start_page 279
container_title Mathematical programming
container_volume 168
creator Kruger, Alexander Y.
Luke, D. Russell
Thao, Nguyen H.
description We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.
doi_str_mv 10.1007/s10107-016-1039-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007798142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007798142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR9zKZZGYpRatQcKGuQ5LJK1OmHyZTaP-9KSO4cvU2597LO4zdIjwggH5MCAiaAyqOUDb8cMYmKEvFpZLqnE0ARMUrhXDJrlJaAQCWdT1h9x9hKGJY7nsbu6ELqbCbtqBgU-e6vhuOxS5uXR_W6ZpdkO1TuPm9U_b18vw5e-WL9_nb7GnBfYlq4MJLW1upNQVw2itqq4aAWvKkQiOc1q21bYV17ZyX6CQp4RuSUAnSLUE5ZXdjbx7-3oc0mNV2Hzd50oj8qW5qlCJTOFI-blOKgcwudmsbjwbBnIyY0YjJRszJiDnkjBgzKbObZYh_zf-HfgAZVWQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007798142</pqid></control><display><type>article</type><title>Set regularities and feasibility problems</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</creator><creatorcontrib>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</creatorcontrib><description>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-016-1039-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convergence ; Euclidean space ; Feasibility ; Full Length Paper ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Projectors ; Theoretical</subject><ispartof>Mathematical programming, 2018-03, Vol.168 (1-2), p.279-311</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016</rights><rights>Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</citedby><cites>FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</cites><orcidid>0000-0002-4508-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-016-1039-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-016-1039-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><creatorcontrib>Thao, Nguyen H.</creatorcontrib><title>Set regularities and feasibility problems</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convergence</subject><subject>Euclidean space</subject><subject>Feasibility</subject><subject>Full Length Paper</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Projectors</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR9zKZZGYpRatQcKGuQ5LJK1OmHyZTaP-9KSO4cvU2597LO4zdIjwggH5MCAiaAyqOUDb8cMYmKEvFpZLqnE0ARMUrhXDJrlJaAQCWdT1h9x9hKGJY7nsbu6ELqbCbtqBgU-e6vhuOxS5uXR_W6ZpdkO1TuPm9U_b18vw5e-WL9_nb7GnBfYlq4MJLW1upNQVw2itqq4aAWvKkQiOc1q21bYV17ZyX6CQp4RuSUAnSLUE5ZXdjbx7-3oc0mNV2Hzd50oj8qW5qlCJTOFI-blOKgcwudmsbjwbBnIyY0YjJRszJiDnkjBgzKbObZYh_zf-HfgAZVWQV</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kruger, Alexander Y.</creator><creator>Luke, D. Russell</creator><creator>Thao, Nguyen H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid></search><sort><creationdate>20180301</creationdate><title>Set regularities and feasibility problems</title><author>Kruger, Alexander Y. ; Luke, D. Russell ; Thao, Nguyen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c4a8a477fe0b7c6fd59f0fdfcf6e92b77daad5188bbc41b4f62c9f4052f7df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convergence</topic><topic>Euclidean space</topic><topic>Feasibility</topic><topic>Full Length Paper</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Projectors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Luke, D. Russell</creatorcontrib><creatorcontrib>Thao, Nguyen H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruger, Alexander Y.</au><au>Luke, D. Russell</au><au>Thao, Nguyen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set regularities and feasibility problems</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>168</volume><issue>1-2</issue><spage>279</spage><epage>311</epage><pages>279-311</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-016-1039-x</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-4508-7360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2018-03, Vol.168 (1-2), p.279-311
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2007798142
source SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Convergence
Euclidean space
Feasibility
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Projectors
Theoretical
title Set regularities and feasibility problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set%20regularities%20and%20feasibility%20problems&rft.jtitle=Mathematical%20programming&rft.au=Kruger,%20Alexander%20Y.&rft.date=2018-03-01&rft.volume=168&rft.issue=1-2&rft.spage=279&rft.epage=311&rft.pages=279-311&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-016-1039-x&rft_dat=%3Cproquest_cross%3E2007798142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007798142&rft_id=info:pmid/&rfr_iscdi=true