Using hierarchical linear modeling to investigate the moderating influence of leadership climate

When confronted with multilevel data, e.g., when individuals are nested within work groups, hierarchical linear modeling (HLM) [Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: SAGE Publications.] can provide a powerful analytical approach. Using the common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Leadership quarterly 2002-02, Vol.13 (1), p.15-33
Hauptverfasser: Gavin, Mark B., Hofmann, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 15
container_title The Leadership quarterly
container_volume 13
creator Gavin, Mark B.
Hofmann, David A.
description When confronted with multilevel data, e.g., when individuals are nested within work groups, hierarchical linear modeling (HLM) [Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: SAGE Publications.] can provide a powerful analytical approach. Using the common data set and the theoretical framework presented in the introductory paper as a foundation, we begin by providing a brief introduction to the HLM analytical framework and describe the basic HLM model. Next, we develop a set of hypotheses concerning relationships among task significance, leadership climate, and hostility both within and across levels of analysis. We then describe and test a series of HLM models designed to investigate these hypotheses. Finally, we conclude with a brief discussion of the interpretation and implications of the results as well as the benefits of HLM in the context of multilevel modeling.
doi_str_mv 10.1016/S1048-9843(01)00102-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200772836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1048984301001023</els_id><sourcerecordid>117047766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ef7e4e4f963469ed929ac77810d8785de8ea34bc52fddf17750feec16dd399543</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonRxFr9CSbEkx5WYWEXOBlj_EqaeNCeEWHo0mx3K2yb-O9lWz17YpL3mWHmQeickmtKaH3zRgmXhZKcXRJ6RQglZcEO0IRKwQrGiTrM9R9yjE5SWpJMVUxO0Mc8hW6BmwDRRNsEa1rchg5MxKveQTuGQ49Dt4U0hIUZAA8N7LJohjENnW830FnAvcctmBykJqyxbcMq46foyJs2wdnvO0Xzx4f3--di9vr0cn83KyyTfCjAC-DAvaoZrxU4VSpjhZCUOClk5UCCYfzTVqV3zlMhKuIBLK2dY0pVnE3RxX7uOvZfm7ysXvab2OUvdUmIEKVkdYaqPWRjn1IEr9cxbxm_NSV6dKl3LvUoShOqdy41y323-z7IF2yzK51sGG92IYIdtOvDPxN-AG4RfRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200772836</pqid></control><display><type>article</type><title>Using hierarchical linear modeling to investigate the moderating influence of leadership climate</title><source>Elsevier ScienceDirect Journals</source><creator>Gavin, Mark B. ; Hofmann, David A.</creator><creatorcontrib>Gavin, Mark B. ; Hofmann, David A.</creatorcontrib><description>When confronted with multilevel data, e.g., when individuals are nested within work groups, hierarchical linear modeling (HLM) [Bryk, A. S., &amp; Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: SAGE Publications.] can provide a powerful analytical approach. Using the common data set and the theoretical framework presented in the introductory paper as a foundation, we begin by providing a brief introduction to the HLM analytical framework and describe the basic HLM model. Next, we develop a set of hypotheses concerning relationships among task significance, leadership climate, and hostility both within and across levels of analysis. We then describe and test a series of HLM models designed to investigate these hypotheses. Finally, we conclude with a brief discussion of the interpretation and implications of the results as well as the benefits of HLM in the context of multilevel modeling.</description><identifier>ISSN: 1048-9843</identifier><identifier>EISSN: 1873-3409</identifier><identifier>DOI: 10.1016/S1048-9843(01)00102-3</identifier><language>eng</language><publisher>Oxford: Elsevier Inc</publisher><subject>Hierarchies ; Leadership ; Linear programming ; Studies</subject><ispartof>The Leadership quarterly, 2002-02, Vol.13 (1), p.15-33</ispartof><rights>2002 Elsevier Science Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ef7e4e4f963469ed929ac77810d8785de8ea34bc52fddf17750feec16dd399543</citedby><cites>FETCH-LOGICAL-c384t-ef7e4e4f963469ed929ac77810d8785de8ea34bc52fddf17750feec16dd399543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1048-9843(01)00102-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gavin, Mark B.</creatorcontrib><creatorcontrib>Hofmann, David A.</creatorcontrib><title>Using hierarchical linear modeling to investigate the moderating influence of leadership climate</title><title>The Leadership quarterly</title><description>When confronted with multilevel data, e.g., when individuals are nested within work groups, hierarchical linear modeling (HLM) [Bryk, A. S., &amp; Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: SAGE Publications.] can provide a powerful analytical approach. Using the common data set and the theoretical framework presented in the introductory paper as a foundation, we begin by providing a brief introduction to the HLM analytical framework and describe the basic HLM model. Next, we develop a set of hypotheses concerning relationships among task significance, leadership climate, and hostility both within and across levels of analysis. We then describe and test a series of HLM models designed to investigate these hypotheses. Finally, we conclude with a brief discussion of the interpretation and implications of the results as well as the benefits of HLM in the context of multilevel modeling.</description><subject>Hierarchies</subject><subject>Leadership</subject><subject>Linear programming</subject><subject>Studies</subject><issn>1048-9843</issn><issn>1873-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEQhonRxFr9CSbEkx5WYWEXOBlj_EqaeNCeEWHo0mx3K2yb-O9lWz17YpL3mWHmQeickmtKaH3zRgmXhZKcXRJ6RQglZcEO0IRKwQrGiTrM9R9yjE5SWpJMVUxO0Mc8hW6BmwDRRNsEa1rchg5MxKveQTuGQ49Dt4U0hIUZAA8N7LJohjENnW830FnAvcctmBykJqyxbcMq46foyJs2wdnvO0Xzx4f3--di9vr0cn83KyyTfCjAC-DAvaoZrxU4VSpjhZCUOClk5UCCYfzTVqV3zlMhKuIBLK2dY0pVnE3RxX7uOvZfm7ysXvab2OUvdUmIEKVkdYaqPWRjn1IEr9cxbxm_NSV6dKl3LvUoShOqdy41y323-z7IF2yzK51sGG92IYIdtOvDPxN-AG4RfRo</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Gavin, Mark B.</creator><creator>Hofmann, David A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020201</creationdate><title>Using hierarchical linear modeling to investigate the moderating influence of leadership climate</title><author>Gavin, Mark B. ; Hofmann, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ef7e4e4f963469ed929ac77810d8785de8ea34bc52fddf17750feec16dd399543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Hierarchies</topic><topic>Leadership</topic><topic>Linear programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavin, Mark B.</creatorcontrib><creatorcontrib>Hofmann, David A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Leadership quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavin, Mark B.</au><au>Hofmann, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using hierarchical linear modeling to investigate the moderating influence of leadership climate</atitle><jtitle>The Leadership quarterly</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>13</volume><issue>1</issue><spage>15</spage><epage>33</epage><pages>15-33</pages><issn>1048-9843</issn><eissn>1873-3409</eissn><abstract>When confronted with multilevel data, e.g., when individuals are nested within work groups, hierarchical linear modeling (HLM) [Bryk, A. S., &amp; Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: SAGE Publications.] can provide a powerful analytical approach. Using the common data set and the theoretical framework presented in the introductory paper as a foundation, we begin by providing a brief introduction to the HLM analytical framework and describe the basic HLM model. Next, we develop a set of hypotheses concerning relationships among task significance, leadership climate, and hostility both within and across levels of analysis. We then describe and test a series of HLM models designed to investigate these hypotheses. Finally, we conclude with a brief discussion of the interpretation and implications of the results as well as the benefits of HLM in the context of multilevel modeling.</abstract><cop>Oxford</cop><pub>Elsevier Inc</pub><doi>10.1016/S1048-9843(01)00102-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1048-9843
ispartof The Leadership quarterly, 2002-02, Vol.13 (1), p.15-33
issn 1048-9843
1873-3409
language eng
recordid cdi_proquest_journals_200772836
source Elsevier ScienceDirect Journals
subjects Hierarchies
Leadership
Linear programming
Studies
title Using hierarchical linear modeling to investigate the moderating influence of leadership climate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20hierarchical%20linear%20modeling%20to%20investigate%20the%20moderating%20influence%20of%20leadership%20climate&rft.jtitle=The%20Leadership%20quarterly&rft.au=Gavin,%20Mark%20B.&rft.date=2002-02-01&rft.volume=13&rft.issue=1&rft.spage=15&rft.epage=33&rft.pages=15-33&rft.issn=1048-9843&rft.eissn=1873-3409&rft_id=info:doi/10.1016/S1048-9843(01)00102-3&rft_dat=%3Cproquest_cross%3E117047766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200772836&rft_id=info:pmid/&rft_els_id=S1048984301001023&rfr_iscdi=true