Diagnosing bot infections using Bayesian inference

Prior research in botnet detection has used the bot lifecycle to build detection systems. These systems, however, use rule-based decision engines which lack automated adaptability and learning, accuracy tunability, the ability to cope with gaps in training data, and the ability to incorporate local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computer Virology and Hacking Techniques 2018-02, Vol.14 (1), p.21-38
Hauptverfasser: Ashfaq, Ayesha Binte, Abaid, Zainab, Ismail, Maliha, Aslam, Muhammad Umar, Syed, Affan A., Khayam, Syed Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 21
container_title Journal of Computer Virology and Hacking Techniques
container_volume 14
creator Ashfaq, Ayesha Binte
Abaid, Zainab
Ismail, Maliha
Aslam, Muhammad Umar
Syed, Affan A.
Khayam, Syed Ali
description Prior research in botnet detection has used the bot lifecycle to build detection systems. These systems, however, use rule-based decision engines which lack automated adaptability and learning, accuracy tunability, the ability to cope with gaps in training data, and the ability to incorporate local security policies. To counter these limitations, we propose to replace the rigid decision engines in contemporary bot detectors with a more formal Bayesian inference engine. Bottleneck, our prototype implementation, builds confidence in bot infections based on the causal bot lifecycle encoded in a Bayesian network. We evaluate Bottleneck by applying it as a post-processing decision engine on lifecycle events generated by two existing bot detectors (BotHunter and BotFlex) on two independently-collected datasets. Our experimental results show that Bottleneck consistently achieves comparable or better accuracy than the existing rule-based detectors when the test data is similar to the training data. For differing training and test data, Bottleneck, due to its automated learning and inference models, easily surpasses the accuracies of rule-based systems. Moreover, Bottleneck’s stochastic nature allows its accuracy to be tuned with respect to organizational needs. Extending Bottleneck’s Bayesian network into an influence diagram allows for local security policies to be defined within our framework. Lastly, we show that Bottleneck can also be extended to incorporate evidence trustscore for false alarm reduction.
doi_str_mv 10.1007/s11416-016-0286-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007703729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007703729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3b99eca97ebd85dac9917921eb0c5b8c6c572b2471045e98e3d3ff0f0155ad023</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8FbwXJ1JmqY56voJC170HNJ0Wrpouibtof_edivoxcNjhpn33jCPsUuEawRQNxExwzyFGbzI0_GErTjPRVooIU7_9OdsE-MeAJDLQuVyxfh9axvfxdY3Sdn1Setrcn3b-ZgMx-GdHSm21h83gbyjC3ZW249Im5-6Zu-PD2_b53T3-vSyvd2lTmDep6LUmpzVisqqkJV1WqPSHKkEJ8vC5U4qXvJMIWSSdEGiEnUNNaCUtgIu1uxq8T2E7mug2Jt9NwQ_nTR8-lqBUFxPLFxYLnQxBqrNIbSfNowGwczpmCUdAzOmdMw4afiiiRPXNxR-nf8XfQN_ZWbu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007703729</pqid></control><display><type>article</type><title>Diagnosing bot infections using Bayesian inference</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Ashfaq, Ayesha Binte ; Abaid, Zainab ; Ismail, Maliha ; Aslam, Muhammad Umar ; Syed, Affan A. ; Khayam, Syed Ali</creator><creatorcontrib>Ashfaq, Ayesha Binte ; Abaid, Zainab ; Ismail, Maliha ; Aslam, Muhammad Umar ; Syed, Affan A. ; Khayam, Syed Ali</creatorcontrib><description>Prior research in botnet detection has used the bot lifecycle to build detection systems. These systems, however, use rule-based decision engines which lack automated adaptability and learning, accuracy tunability, the ability to cope with gaps in training data, and the ability to incorporate local security policies. To counter these limitations, we propose to replace the rigid decision engines in contemporary bot detectors with a more formal Bayesian inference engine. Bottleneck, our prototype implementation, builds confidence in bot infections based on the causal bot lifecycle encoded in a Bayesian network. We evaluate Bottleneck by applying it as a post-processing decision engine on lifecycle events generated by two existing bot detectors (BotHunter and BotFlex) on two independently-collected datasets. Our experimental results show that Bottleneck consistently achieves comparable or better accuracy than the existing rule-based detectors when the test data is similar to the training data. For differing training and test data, Bottleneck, due to its automated learning and inference models, easily surpasses the accuracies of rule-based systems. Moreover, Bottleneck’s stochastic nature allows its accuracy to be tuned with respect to organizational needs. Extending Bottleneck’s Bayesian network into an influence diagram allows for local security policies to be defined within our framework. Lastly, we show that Bottleneck can also be extended to incorporate evidence trustscore for false alarm reduction.</description><identifier>ISSN: 2263-8733</identifier><identifier>EISSN: 2263-8733</identifier><identifier>DOI: 10.1007/s11416-016-0286-y</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Accuracy ; Automation ; Bayesian analysis ; Coding ; Computer Science ; Detectors ; Engines ; False alarms ; Malware ; Model accuracy ; Original Paper ; Policies ; Post-production processing ; Sensors ; Statistical inference ; Training</subject><ispartof>Journal of Computer Virology and Hacking Techniques, 2018-02, Vol.14 (1), p.21-38</ispartof><rights>Springer-Verlag France 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3b99eca97ebd85dac9917921eb0c5b8c6c572b2471045e98e3d3ff0f0155ad023</citedby><cites>FETCH-LOGICAL-c316t-3b99eca97ebd85dac9917921eb0c5b8c6c572b2471045e98e3d3ff0f0155ad023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11416-016-0286-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11416-016-0286-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ashfaq, Ayesha Binte</creatorcontrib><creatorcontrib>Abaid, Zainab</creatorcontrib><creatorcontrib>Ismail, Maliha</creatorcontrib><creatorcontrib>Aslam, Muhammad Umar</creatorcontrib><creatorcontrib>Syed, Affan A.</creatorcontrib><creatorcontrib>Khayam, Syed Ali</creatorcontrib><title>Diagnosing bot infections using Bayesian inference</title><title>Journal of Computer Virology and Hacking Techniques</title><addtitle>J Comput Virol Hack Tech</addtitle><description>Prior research in botnet detection has used the bot lifecycle to build detection systems. These systems, however, use rule-based decision engines which lack automated adaptability and learning, accuracy tunability, the ability to cope with gaps in training data, and the ability to incorporate local security policies. To counter these limitations, we propose to replace the rigid decision engines in contemporary bot detectors with a more formal Bayesian inference engine. Bottleneck, our prototype implementation, builds confidence in bot infections based on the causal bot lifecycle encoded in a Bayesian network. We evaluate Bottleneck by applying it as a post-processing decision engine on lifecycle events generated by two existing bot detectors (BotHunter and BotFlex) on two independently-collected datasets. Our experimental results show that Bottleneck consistently achieves comparable or better accuracy than the existing rule-based detectors when the test data is similar to the training data. For differing training and test data, Bottleneck, due to its automated learning and inference models, easily surpasses the accuracies of rule-based systems. Moreover, Bottleneck’s stochastic nature allows its accuracy to be tuned with respect to organizational needs. Extending Bottleneck’s Bayesian network into an influence diagram allows for local security policies to be defined within our framework. Lastly, we show that Bottleneck can also be extended to incorporate evidence trustscore for false alarm reduction.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Bayesian analysis</subject><subject>Coding</subject><subject>Computer Science</subject><subject>Detectors</subject><subject>Engines</subject><subject>False alarms</subject><subject>Malware</subject><subject>Model accuracy</subject><subject>Original Paper</subject><subject>Policies</subject><subject>Post-production processing</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Training</subject><issn>2263-8733</issn><issn>2263-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8FbwXJ1JmqY56voJC170HNJ0Wrpouibtof_edivoxcNjhpn33jCPsUuEawRQNxExwzyFGbzI0_GErTjPRVooIU7_9OdsE-MeAJDLQuVyxfh9axvfxdY3Sdn1Setrcn3b-ZgMx-GdHSm21h83gbyjC3ZW249Im5-6Zu-PD2_b53T3-vSyvd2lTmDep6LUmpzVisqqkJV1WqPSHKkEJ8vC5U4qXvJMIWSSdEGiEnUNNaCUtgIu1uxq8T2E7mug2Jt9NwQ_nTR8-lqBUFxPLFxYLnQxBqrNIbSfNowGwczpmCUdAzOmdMw4afiiiRPXNxR-nf8XfQN_ZWbu</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Ashfaq, Ayesha Binte</creator><creator>Abaid, Zainab</creator><creator>Ismail, Maliha</creator><creator>Aslam, Muhammad Umar</creator><creator>Syed, Affan A.</creator><creator>Khayam, Syed Ali</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Diagnosing bot infections using Bayesian inference</title><author>Ashfaq, Ayesha Binte ; Abaid, Zainab ; Ismail, Maliha ; Aslam, Muhammad Umar ; Syed, Affan A. ; Khayam, Syed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3b99eca97ebd85dac9917921eb0c5b8c6c572b2471045e98e3d3ff0f0155ad023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Bayesian analysis</topic><topic>Coding</topic><topic>Computer Science</topic><topic>Detectors</topic><topic>Engines</topic><topic>False alarms</topic><topic>Malware</topic><topic>Model accuracy</topic><topic>Original Paper</topic><topic>Policies</topic><topic>Post-production processing</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashfaq, Ayesha Binte</creatorcontrib><creatorcontrib>Abaid, Zainab</creatorcontrib><creatorcontrib>Ismail, Maliha</creatorcontrib><creatorcontrib>Aslam, Muhammad Umar</creatorcontrib><creatorcontrib>Syed, Affan A.</creatorcontrib><creatorcontrib>Khayam, Syed Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashfaq, Ayesha Binte</au><au>Abaid, Zainab</au><au>Ismail, Maliha</au><au>Aslam, Muhammad Umar</au><au>Syed, Affan A.</au><au>Khayam, Syed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing bot infections using Bayesian inference</atitle><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle><stitle>J Comput Virol Hack Tech</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>2263-8733</issn><eissn>2263-8733</eissn><abstract>Prior research in botnet detection has used the bot lifecycle to build detection systems. These systems, however, use rule-based decision engines which lack automated adaptability and learning, accuracy tunability, the ability to cope with gaps in training data, and the ability to incorporate local security policies. To counter these limitations, we propose to replace the rigid decision engines in contemporary bot detectors with a more formal Bayesian inference engine. Bottleneck, our prototype implementation, builds confidence in bot infections based on the causal bot lifecycle encoded in a Bayesian network. We evaluate Bottleneck by applying it as a post-processing decision engine on lifecycle events generated by two existing bot detectors (BotHunter and BotFlex) on two independently-collected datasets. Our experimental results show that Bottleneck consistently achieves comparable or better accuracy than the existing rule-based detectors when the test data is similar to the training data. For differing training and test data, Bottleneck, due to its automated learning and inference models, easily surpasses the accuracies of rule-based systems. Moreover, Bottleneck’s stochastic nature allows its accuracy to be tuned with respect to organizational needs. Extending Bottleneck’s Bayesian network into an influence diagram allows for local security policies to be defined within our framework. Lastly, we show that Bottleneck can also be extended to incorporate evidence trustscore for false alarm reduction.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s11416-016-0286-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2263-8733
ispartof Journal of Computer Virology and Hacking Techniques, 2018-02, Vol.14 (1), p.21-38
issn 2263-8733
2263-8733
language eng
recordid cdi_proquest_journals_2007703729
source SpringerNature Journals; Alma/SFX Local Collection
subjects Accuracy
Automation
Bayesian analysis
Coding
Computer Science
Detectors
Engines
False alarms
Malware
Model accuracy
Original Paper
Policies
Post-production processing
Sensors
Statistical inference
Training
title Diagnosing bot infections using Bayesian inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20bot%20infections%20using%20Bayesian%20inference&rft.jtitle=Journal%20of%20Computer%20Virology%20and%20Hacking%20Techniques&rft.au=Ashfaq,%20Ayesha%20Binte&rft.date=2018-02-01&rft.volume=14&rft.issue=1&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=2263-8733&rft.eissn=2263-8733&rft_id=info:doi/10.1007/s11416-016-0286-y&rft_dat=%3Cproquest_cross%3E2007703729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007703729&rft_id=info:pmid/&rfr_iscdi=true