Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production

Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2018-08, Vol.200 (6), p.883-895
Hauptverfasser: Román-Ponce, Brenda, Ramos-Garza, Juan, Arroyo-Herrera, Ivan, Maldonado-Hernández, Jessica, Bahena-Osorio, Yanelly, Vásquez-Murrieta, María Soledad, Wang, En Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 895
container_issue 6
container_start_page 883
container_title Archives of microbiology
container_volume 200
creator Román-Ponce, Brenda
Ramos-Garza, Juan
Arroyo-Herrera, Ivan
Maldonado-Hernández, Jessica
Bahena-Osorio, Yanelly
Vásquez-Murrieta, María Soledad
Wang, En Tao
description Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As 5+ ) and arsenite (As 3+ ), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase ( arsC ), and arsenite transporter ( arsB ) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas , and Staphylococcus . They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As 5+ and 10–20 mM for As 3+ . Eleven isolates presented dual abilities of As 5+ reduction and As 3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As 5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As 3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As 5+ and As 3+ , respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.
doi_str_mv 10.1007/s00203-018-1495-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007693694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007693694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</originalsourceid><addsrcrecordid>eNp1kDtvFDEUhS0EIpvHD6BBlqgn-DWemTKKkoAURAMSnXXHvs462rEX21uk54fj1YSkorrF-e450kfIB84uOWPD58KYYLJjfOy4mvqOvyEbrqTo2CB-vSUbJpnoxknKE3JayiNjXIzj-J6ciEkNWjC9IX--od1CDGWhyVPIBWOwNGMJpUK0SEOkGF3ab59qC2awFXMAGkraQUVHfU7LkcClxfsdxHosWkJEWiHsQnwoFKKjdYshrwOtLGWk-5zcwdaQ4jl552FX8OL5npGftzc_rr9099_vvl5f3XdWDqJ2ehy8EB4lH7R21utezSNIdNZ5BO1Vr5DBPEnwbnYwO-YcuKGflLKz7a08I5_W3jb9-4Clmsd0yLFNGtF86knqSTWKr5TNqZSM3uxzWCA_Gc7M0btZvZvm3Ry9G95-Pj43H-YF3cvHP9ENECtQWhQfML9O_7_1L91tkic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007693694</pqid></control><display><type>article</type><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</creator><creatorcontrib>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</creatorcontrib><description>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As 5+ ) and arsenite (As 3+ ), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase ( arsC ), and arsenite transporter ( arsB ) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas , and Staphylococcus . They could tolerate high concentrations of arsenic with MIC from 20 to &gt; 100 mM for As 5+ and 10–20 mM for As 3+ . Eleven isolates presented dual abilities of As 5+ reduction and As 3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As 5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As 3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As 5+ and As 3+ , respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-018-1495-1</identifier><identifier>PMID: 29476206</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerobic conditions ; Arsenate reductase ; Arsenates ; Arsenates - metabolism ; Arsenic ; Arsenic - metabolism ; Arsenic ions ; Arsenite ; Arsenites - metabolism ; Arthrobacter ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Biochemistry ; Biodegradation, Environmental ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; Cell Biology ; Chelates ; Contamination ; DNA, Ribosomal - genetics ; Ecology ; Endemic plants ; Endophytes ; Endophytes - classification ; Endophytes - genetics ; Endophytes - isolation &amp; purification ; Endophytes - metabolism ; Genetic transformation ; Heavy metals ; Life Sciences ; Magnoliopsida - metabolism ; Magnoliopsida - microbiology ; Mexico ; Microbial Ecology ; Microbiology ; Mine tailings ; Mine wastes ; Minimum inhibitory concentration ; Mining ; Original Paper ; Oxidation ; Phylogeny ; Plant Roots - metabolism ; Plant Roots - microbiology ; Prosopis ; Prosopis - microbiology ; Pseudomonas ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Strains (organisms) ; Toxicity</subject><ispartof>Archives of microbiology, 2018-08, Vol.200 (6), p.883-895</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Archives of Microbiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</citedby><cites>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-018-1495-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-018-1495-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29476206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Román-Ponce, Brenda</creatorcontrib><creatorcontrib>Ramos-Garza, Juan</creatorcontrib><creatorcontrib>Arroyo-Herrera, Ivan</creatorcontrib><creatorcontrib>Maldonado-Hernández, Jessica</creatorcontrib><creatorcontrib>Bahena-Osorio, Yanelly</creatorcontrib><creatorcontrib>Vásquez-Murrieta, María Soledad</creatorcontrib><creatorcontrib>Wang, En Tao</creatorcontrib><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As 5+ ) and arsenite (As 3+ ), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase ( arsC ), and arsenite transporter ( arsB ) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas , and Staphylococcus . They could tolerate high concentrations of arsenic with MIC from 20 to &gt; 100 mM for As 5+ and 10–20 mM for As 3+ . Eleven isolates presented dual abilities of As 5+ reduction and As 3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As 5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As 3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As 5+ and As 3+ , respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</description><subject>Aerobic conditions</subject><subject>Arsenate reductase</subject><subject>Arsenates</subject><subject>Arsenates - metabolism</subject><subject>Arsenic</subject><subject>Arsenic - metabolism</subject><subject>Arsenic ions</subject><subject>Arsenite</subject><subject>Arsenites - metabolism</subject><subject>Arthrobacter</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Biochemistry</subject><subject>Biodegradation, Environmental</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chelates</subject><subject>Contamination</subject><subject>DNA, Ribosomal - genetics</subject><subject>Ecology</subject><subject>Endemic plants</subject><subject>Endophytes</subject><subject>Endophytes - classification</subject><subject>Endophytes - genetics</subject><subject>Endophytes - isolation &amp; purification</subject><subject>Endophytes - metabolism</subject><subject>Genetic transformation</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Magnoliopsida - metabolism</subject><subject>Magnoliopsida - microbiology</subject><subject>Mexico</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Minimum inhibitory concentration</subject><subject>Mining</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>Prosopis</subject><subject>Prosopis - microbiology</subject><subject>Pseudomonas</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Strains (organisms)</subject><subject>Toxicity</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtvFDEUhS0EIpvHD6BBlqgn-DWemTKKkoAURAMSnXXHvs462rEX21uk54fj1YSkorrF-e450kfIB84uOWPD58KYYLJjfOy4mvqOvyEbrqTo2CB-vSUbJpnoxknKE3JayiNjXIzj-J6ciEkNWjC9IX--od1CDGWhyVPIBWOwNGMJpUK0SEOkGF3ab59qC2awFXMAGkraQUVHfU7LkcClxfsdxHosWkJEWiHsQnwoFKKjdYshrwOtLGWk-5zcwdaQ4jl552FX8OL5npGftzc_rr9099_vvl5f3XdWDqJ2ehy8EB4lH7R21utezSNIdNZ5BO1Vr5DBPEnwbnYwO-YcuKGflLKz7a08I5_W3jb9-4Clmsd0yLFNGtF86knqSTWKr5TNqZSM3uxzWCA_Gc7M0btZvZvm3Ry9G95-Pj43H-YF3cvHP9ENECtQWhQfML9O_7_1L91tkic</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Román-Ponce, Brenda</creator><creator>Ramos-Garza, Juan</creator><creator>Arroyo-Herrera, Ivan</creator><creator>Maldonado-Hernández, Jessica</creator><creator>Bahena-Osorio, Yanelly</creator><creator>Vásquez-Murrieta, María Soledad</creator><creator>Wang, En Tao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20180801</creationdate><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><author>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerobic conditions</topic><topic>Arsenate reductase</topic><topic>Arsenates</topic><topic>Arsenates - metabolism</topic><topic>Arsenic</topic><topic>Arsenic - metabolism</topic><topic>Arsenic ions</topic><topic>Arsenite</topic><topic>Arsenites - metabolism</topic><topic>Arthrobacter</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Biochemistry</topic><topic>Biodegradation, Environmental</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chelates</topic><topic>Contamination</topic><topic>DNA, Ribosomal - genetics</topic><topic>Ecology</topic><topic>Endemic plants</topic><topic>Endophytes</topic><topic>Endophytes - classification</topic><topic>Endophytes - genetics</topic><topic>Endophytes - isolation &amp; purification</topic><topic>Endophytes - metabolism</topic><topic>Genetic transformation</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Magnoliopsida - metabolism</topic><topic>Magnoliopsida - microbiology</topic><topic>Mexico</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Minimum inhibitory concentration</topic><topic>Mining</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>Prosopis</topic><topic>Prosopis - microbiology</topic><topic>Pseudomonas</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Strains (organisms)</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román-Ponce, Brenda</creatorcontrib><creatorcontrib>Ramos-Garza, Juan</creatorcontrib><creatorcontrib>Arroyo-Herrera, Ivan</creatorcontrib><creatorcontrib>Maldonado-Hernández, Jessica</creatorcontrib><creatorcontrib>Bahena-Osorio, Yanelly</creatorcontrib><creatorcontrib>Vásquez-Murrieta, María Soledad</creatorcontrib><creatorcontrib>Wang, En Tao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Román-Ponce, Brenda</au><au>Ramos-Garza, Juan</au><au>Arroyo-Herrera, Ivan</au><au>Maldonado-Hernández, Jessica</au><au>Bahena-Osorio, Yanelly</au><au>Vásquez-Murrieta, María Soledad</au><au>Wang, En Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>200</volume><issue>6</issue><spage>883</spage><epage>895</epage><pages>883-895</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As 5+ ) and arsenite (As 3+ ), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase ( arsC ), and arsenite transporter ( arsB ) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas , and Staphylococcus . They could tolerate high concentrations of arsenic with MIC from 20 to &gt; 100 mM for As 5+ and 10–20 mM for As 3+ . Eleven isolates presented dual abilities of As 5+ reduction and As 3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As 5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As 3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As 5+ and As 3+ , respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29476206</pmid><doi>10.1007/s00203-018-1495-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2018-08, Vol.200 (6), p.883-895
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_journals_2007693694
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aerobic conditions
Arsenate reductase
Arsenates
Arsenates - metabolism
Arsenic
Arsenic - metabolism
Arsenic ions
Arsenite
Arsenites - metabolism
Arthrobacter
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Biochemistry
Biodegradation, Environmental
Biomedical and Life Sciences
Bioremediation
Biotechnology
Cell Biology
Chelates
Contamination
DNA, Ribosomal - genetics
Ecology
Endemic plants
Endophytes
Endophytes - classification
Endophytes - genetics
Endophytes - isolation & purification
Endophytes - metabolism
Genetic transformation
Heavy metals
Life Sciences
Magnoliopsida - metabolism
Magnoliopsida - microbiology
Mexico
Microbial Ecology
Microbiology
Mine tailings
Mine wastes
Minimum inhibitory concentration
Mining
Original Paper
Oxidation
Phylogeny
Plant Roots - metabolism
Plant Roots - microbiology
Prosopis
Prosopis - microbiology
Pseudomonas
RNA, Ribosomal, 16S - genetics
rRNA 16S
Strains (organisms)
Toxicity
title Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20arsenic%20resistance%20in%20endophytic%20bacteria%20isolated%20from%20endemic%20plant%20of%20mine%20tailings%20and%20their%20arsenophore%20production&rft.jtitle=Archives%20of%20microbiology&rft.au=Rom%C3%A1n-Ponce,%20Brenda&rft.date=2018-08-01&rft.volume=200&rft.issue=6&rft.spage=883&rft.epage=895&rft.pages=883-895&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-018-1495-1&rft_dat=%3Cproquest_cross%3E2007693694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007693694&rft_id=info:pmid/29476206&rfr_iscdi=true