Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production
Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 str...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2018-08, Vol.200 (6), p.883-895 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 895 |
---|---|
container_issue | 6 |
container_start_page | 883 |
container_title | Archives of microbiology |
container_volume | 200 |
creator | Román-Ponce, Brenda Ramos-Garza, Juan Arroyo-Herrera, Ivan Maldonado-Hernández, Jessica Bahena-Osorio, Yanelly Vásquez-Murrieta, María Soledad Wang, En Tao |
description | Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of
Prosopis laevigata
and
Spharealcea angustifolia
grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As
5+
) and arsenite (As
3+
), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (
arsC
), and arsenite transporter (
arsB
) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera
Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas
, and
Staphylococcus
. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As
5+
and 10–20 mM for As
3+
. Eleven isolates presented dual abilities of As
5+
reduction and As
3+
oxidation. As the most effective strains,
Micrococcus luteus
NE2E1 reduced 94% of the As
5+
and
Pseudomonas zhaodongensis
NM2E7 oxidized 46% of As
3+
under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As
5+
and As
3+
, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process. |
doi_str_mv | 10.1007/s00203-018-1495-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007693694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007693694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</originalsourceid><addsrcrecordid>eNp1kDtvFDEUhS0EIpvHD6BBlqgn-DWemTKKkoAURAMSnXXHvs462rEX21uk54fj1YSkorrF-e450kfIB84uOWPD58KYYLJjfOy4mvqOvyEbrqTo2CB-vSUbJpnoxknKE3JayiNjXIzj-J6ciEkNWjC9IX--od1CDGWhyVPIBWOwNGMJpUK0SEOkGF3ab59qC2awFXMAGkraQUVHfU7LkcClxfsdxHosWkJEWiHsQnwoFKKjdYshrwOtLGWk-5zcwdaQ4jl552FX8OL5npGftzc_rr9099_vvl5f3XdWDqJ2ehy8EB4lH7R21utezSNIdNZ5BO1Vr5DBPEnwbnYwO-YcuKGflLKz7a08I5_W3jb9-4Clmsd0yLFNGtF86knqSTWKr5TNqZSM3uxzWCA_Gc7M0btZvZvm3Ry9G95-Pj43H-YF3cvHP9ENECtQWhQfML9O_7_1L91tkic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007693694</pqid></control><display><type>article</type><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</creator><creatorcontrib>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</creatorcontrib><description>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of
Prosopis laevigata
and
Spharealcea angustifolia
grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As
5+
) and arsenite (As
3+
), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (
arsC
), and arsenite transporter (
arsB
) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera
Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas
, and
Staphylococcus
. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As
5+
and 10–20 mM for As
3+
. Eleven isolates presented dual abilities of As
5+
reduction and As
3+
oxidation. As the most effective strains,
Micrococcus luteus
NE2E1 reduced 94% of the As
5+
and
Pseudomonas zhaodongensis
NM2E7 oxidized 46% of As
3+
under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As
5+
and As
3+
, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-018-1495-1</identifier><identifier>PMID: 29476206</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerobic conditions ; Arsenate reductase ; Arsenates ; Arsenates - metabolism ; Arsenic ; Arsenic - metabolism ; Arsenic ions ; Arsenite ; Arsenites - metabolism ; Arthrobacter ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Biochemistry ; Biodegradation, Environmental ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; Cell Biology ; Chelates ; Contamination ; DNA, Ribosomal - genetics ; Ecology ; Endemic plants ; Endophytes ; Endophytes - classification ; Endophytes - genetics ; Endophytes - isolation & purification ; Endophytes - metabolism ; Genetic transformation ; Heavy metals ; Life Sciences ; Magnoliopsida - metabolism ; Magnoliopsida - microbiology ; Mexico ; Microbial Ecology ; Microbiology ; Mine tailings ; Mine wastes ; Minimum inhibitory concentration ; Mining ; Original Paper ; Oxidation ; Phylogeny ; Plant Roots - metabolism ; Plant Roots - microbiology ; Prosopis ; Prosopis - microbiology ; Pseudomonas ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Strains (organisms) ; Toxicity</subject><ispartof>Archives of microbiology, 2018-08, Vol.200 (6), p.883-895</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Archives of Microbiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</citedby><cites>FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-018-1495-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-018-1495-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29476206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Román-Ponce, Brenda</creatorcontrib><creatorcontrib>Ramos-Garza, Juan</creatorcontrib><creatorcontrib>Arroyo-Herrera, Ivan</creatorcontrib><creatorcontrib>Maldonado-Hernández, Jessica</creatorcontrib><creatorcontrib>Bahena-Osorio, Yanelly</creatorcontrib><creatorcontrib>Vásquez-Murrieta, María Soledad</creatorcontrib><creatorcontrib>Wang, En Tao</creatorcontrib><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of
Prosopis laevigata
and
Spharealcea angustifolia
grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As
5+
) and arsenite (As
3+
), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (
arsC
), and arsenite transporter (
arsB
) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera
Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas
, and
Staphylococcus
. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As
5+
and 10–20 mM for As
3+
. Eleven isolates presented dual abilities of As
5+
reduction and As
3+
oxidation. As the most effective strains,
Micrococcus luteus
NE2E1 reduced 94% of the As
5+
and
Pseudomonas zhaodongensis
NM2E7 oxidized 46% of As
3+
under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As
5+
and As
3+
, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</description><subject>Aerobic conditions</subject><subject>Arsenate reductase</subject><subject>Arsenates</subject><subject>Arsenates - metabolism</subject><subject>Arsenic</subject><subject>Arsenic - metabolism</subject><subject>Arsenic ions</subject><subject>Arsenite</subject><subject>Arsenites - metabolism</subject><subject>Arthrobacter</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Biochemistry</subject><subject>Biodegradation, Environmental</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chelates</subject><subject>Contamination</subject><subject>DNA, Ribosomal - genetics</subject><subject>Ecology</subject><subject>Endemic plants</subject><subject>Endophytes</subject><subject>Endophytes - classification</subject><subject>Endophytes - genetics</subject><subject>Endophytes - isolation & purification</subject><subject>Endophytes - metabolism</subject><subject>Genetic transformation</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Magnoliopsida - metabolism</subject><subject>Magnoliopsida - microbiology</subject><subject>Mexico</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Minimum inhibitory concentration</subject><subject>Mining</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>Prosopis</subject><subject>Prosopis - microbiology</subject><subject>Pseudomonas</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Strains (organisms)</subject><subject>Toxicity</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtvFDEUhS0EIpvHD6BBlqgn-DWemTKKkoAURAMSnXXHvs462rEX21uk54fj1YSkorrF-e450kfIB84uOWPD58KYYLJjfOy4mvqOvyEbrqTo2CB-vSUbJpnoxknKE3JayiNjXIzj-J6ciEkNWjC9IX--od1CDGWhyVPIBWOwNGMJpUK0SEOkGF3ab59qC2awFXMAGkraQUVHfU7LkcClxfsdxHosWkJEWiHsQnwoFKKjdYshrwOtLGWk-5zcwdaQ4jl552FX8OL5npGftzc_rr9099_vvl5f3XdWDqJ2ehy8EB4lH7R21utezSNIdNZ5BO1Vr5DBPEnwbnYwO-YcuKGflLKz7a08I5_W3jb9-4Clmsd0yLFNGtF86knqSTWKr5TNqZSM3uxzWCA_Gc7M0btZvZvm3Ry9G95-Pj43H-YF3cvHP9ENECtQWhQfML9O_7_1L91tkic</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Román-Ponce, Brenda</creator><creator>Ramos-Garza, Juan</creator><creator>Arroyo-Herrera, Ivan</creator><creator>Maldonado-Hernández, Jessica</creator><creator>Bahena-Osorio, Yanelly</creator><creator>Vásquez-Murrieta, María Soledad</creator><creator>Wang, En Tao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20180801</creationdate><title>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</title><author>Román-Ponce, Brenda ; Ramos-Garza, Juan ; Arroyo-Herrera, Ivan ; Maldonado-Hernández, Jessica ; Bahena-Osorio, Yanelly ; Vásquez-Murrieta, María Soledad ; Wang, En Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-687f22fe31766dcf654b8a3edcdfea6f454e0ab93afdbdabd0ddad75944cbc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerobic conditions</topic><topic>Arsenate reductase</topic><topic>Arsenates</topic><topic>Arsenates - metabolism</topic><topic>Arsenic</topic><topic>Arsenic - metabolism</topic><topic>Arsenic ions</topic><topic>Arsenite</topic><topic>Arsenites - metabolism</topic><topic>Arthrobacter</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Biochemistry</topic><topic>Biodegradation, Environmental</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chelates</topic><topic>Contamination</topic><topic>DNA, Ribosomal - genetics</topic><topic>Ecology</topic><topic>Endemic plants</topic><topic>Endophytes</topic><topic>Endophytes - classification</topic><topic>Endophytes - genetics</topic><topic>Endophytes - isolation & purification</topic><topic>Endophytes - metabolism</topic><topic>Genetic transformation</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Magnoliopsida - metabolism</topic><topic>Magnoliopsida - microbiology</topic><topic>Mexico</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Minimum inhibitory concentration</topic><topic>Mining</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>Prosopis</topic><topic>Prosopis - microbiology</topic><topic>Pseudomonas</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Strains (organisms)</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román-Ponce, Brenda</creatorcontrib><creatorcontrib>Ramos-Garza, Juan</creatorcontrib><creatorcontrib>Arroyo-Herrera, Ivan</creatorcontrib><creatorcontrib>Maldonado-Hernández, Jessica</creatorcontrib><creatorcontrib>Bahena-Osorio, Yanelly</creatorcontrib><creatorcontrib>Vásquez-Murrieta, María Soledad</creatorcontrib><creatorcontrib>Wang, En Tao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Román-Ponce, Brenda</au><au>Ramos-Garza, Juan</au><au>Arroyo-Herrera, Ivan</au><au>Maldonado-Hernández, Jessica</au><au>Bahena-Osorio, Yanelly</au><au>Vásquez-Murrieta, María Soledad</au><au>Wang, En Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>200</volume><issue>6</issue><spage>883</spage><epage>895</epage><pages>883-895</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of
Prosopis laevigata
and
Spharealcea angustifolia
grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As
5+
) and arsenite (As
3+
), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (
arsC
), and arsenite transporter (
arsB
) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera
Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas
, and
Staphylococcus
. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As
5+
and 10–20 mM for As
3+
. Eleven isolates presented dual abilities of As
5+
reduction and As
3+
oxidation. As the most effective strains,
Micrococcus luteus
NE2E1 reduced 94% of the As
5+
and
Pseudomonas zhaodongensis
NM2E7 oxidized 46% of As
3+
under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As
5+
and As
3+
, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29476206</pmid><doi>10.1007/s00203-018-1495-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-8933 |
ispartof | Archives of microbiology, 2018-08, Vol.200 (6), p.883-895 |
issn | 0302-8933 1432-072X |
language | eng |
recordid | cdi_proquest_journals_2007693694 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Aerobic conditions Arsenate reductase Arsenates Arsenates - metabolism Arsenic Arsenic - metabolism Arsenic ions Arsenite Arsenites - metabolism Arthrobacter Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Biochemistry Biodegradation, Environmental Biomedical and Life Sciences Bioremediation Biotechnology Cell Biology Chelates Contamination DNA, Ribosomal - genetics Ecology Endemic plants Endophytes Endophytes - classification Endophytes - genetics Endophytes - isolation & purification Endophytes - metabolism Genetic transformation Heavy metals Life Sciences Magnoliopsida - metabolism Magnoliopsida - microbiology Mexico Microbial Ecology Microbiology Mine tailings Mine wastes Minimum inhibitory concentration Mining Original Paper Oxidation Phylogeny Plant Roots - metabolism Plant Roots - microbiology Prosopis Prosopis - microbiology Pseudomonas RNA, Ribosomal, 16S - genetics rRNA 16S Strains (organisms) Toxicity |
title | Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20arsenic%20resistance%20in%20endophytic%20bacteria%20isolated%20from%20endemic%20plant%20of%20mine%20tailings%20and%20their%20arsenophore%20production&rft.jtitle=Archives%20of%20microbiology&rft.au=Rom%C3%A1n-Ponce,%20Brenda&rft.date=2018-08-01&rft.volume=200&rft.issue=6&rft.spage=883&rft.epage=895&rft.pages=883-895&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-018-1495-1&rft_dat=%3Cproquest_cross%3E2007693694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007693694&rft_id=info:pmid/29476206&rfr_iscdi=true |