Data‐Driven Identification Constraints for DSGE Models

We propose imposing data‐driven identification constraints to alleviate the multimodality problem arising in the estimation of poorly identified dynamic stochastic general equilibrium models under non‐informative prior distributions. We also devise an iterative procedure based on the posterior densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxford bulletin of economics and statistics 2018-04, Vol.80 (2), p.236-258
Hauptverfasser: Lanne, Markku, Luoto, Jani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose imposing data‐driven identification constraints to alleviate the multimodality problem arising in the estimation of poorly identified dynamic stochastic general equilibrium models under non‐informative prior distributions. We also devise an iterative procedure based on the posterior density of the parameters for finding these constraints. An empirical application to the Smets and Wouters () model demonstrates the properties of the estimation method, and shows how the problem of multimodal posterior distributions caused by parameter redundancy is eliminated by identification constraints. Out‐of‐sample forecast comparisons as well as Bayes factors lend support to the constrained model.
ISSN:0305-9049
1468-0084
DOI:10.1111/obes.12217