Skeletonization method for vessel delineation of arteriovenous malformation

Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization procedure. In order to successfully navigate the catheter and perform embolizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2018-02, Vol.93, p.93-105
Hauptverfasser: Babin, D., Pižurica, A., Velicki, L., Matić, V., Galić, I., Leventić, H., Zlokolica, V., Philips, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 93
container_title Computers in biology and medicine
container_volume 93
creator Babin, D.
Pižurica, A.
Velicki, L.
Matić, V.
Galić, I.
Leventić, H.
Zlokolica, V.
Philips, W.
description Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization procedure. In order to successfully navigate the catheter and perform embolization, the segmented blood vessels need to be classified into feeding arteries, draining veins and the AVM nidus. For this reason we address here the AVM localization and vessel decomposition problem. We propose in this paper a novel AVM localization and vessel delineation method using ordered thinning-based skeletonization. The main focus of vessel delineation is the delineation of draining veins since it is essential for the embolization procedure. The main contribution is a graph-based method for exact extraction of draining veins which, in combination with our earlier work on AVM detection, allows the AVM decomposition into veins, arteries and the nidus (with an emphasis on the draining veins). We validate the proposed approach on blood vessel phantoms representing the veins and the AVM structure, as well as on cerebral 3D digital rotational angiography (3DRA) images before and after embolization, paired with digital subtraction angiography (DSA) images. Results on AVM delineation show high correspondence to the ground truth structures and indicate potentials for use in surgical planning. [Display omitted] •Automatic localization and decomposition of brain arteriovenous malformation (AVM).•Image skeletonization used for automatic AVM localization and extraction.•Graph-based skeleton processing for extraction of draining veins.•Validation against ground truth segmentation, phantoms and post-embolization scans.
doi_str_mv 10.1016/j.compbiomed.2017.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007509337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517304080</els_id><sourcerecordid>2007509337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-199423433e20659aac70ce1daff372801de07945ab7c09079879b46e8129e1c13</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EglL4BRSJdcKMnZeXgHiJSiyAteU6E-GSxMVOK8HX49Iilqw80j3jqzmMJQgZApYXi8y4fjm3rqcm44BVhjwDxD02wbqSKRQi32cTAIQ0r3lxxI5DWABADgIO2RGXXGIhygl7fH6njkY32C89WjckPY1vrkla55M1hUBd0lBnB9qmrk20H8lbt6bBrULS6y6i_U96wg5a3QU63b1T9np783J9n86e7h6uL2epEaUcU5Qy5yIXgjiUhdTaVGAIG922ouI1YENQybzQ88qAjGO8aJ6XVCOXhAbFlJ1v_11697GiMKqFW_khVioOUBUghagiVW8p410Inlq19LbX_lMhqI1FtVB_FtXGokKuosW4erYrWM032e_ir7YIXG0BimeuLXkVjKXBUGM9mVE1zv7f8g1f-4iO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007509337</pqid></control><display><type>article</type><title>Skeletonization method for vessel delineation of arteriovenous malformation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Babin, D. ; Pižurica, A. ; Velicki, L. ; Matić, V. ; Galić, I. ; Leventić, H. ; Zlokolica, V. ; Philips, W.</creator><creatorcontrib>Babin, D. ; Pižurica, A. ; Velicki, L. ; Matić, V. ; Galić, I. ; Leventić, H. ; Zlokolica, V. ; Philips, W.</creatorcontrib><description>Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization procedure. In order to successfully navigate the catheter and perform embolization, the segmented blood vessels need to be classified into feeding arteries, draining veins and the AVM nidus. For this reason we address here the AVM localization and vessel decomposition problem. We propose in this paper a novel AVM localization and vessel delineation method using ordered thinning-based skeletonization. The main focus of vessel delineation is the delineation of draining veins since it is essential for the embolization procedure. The main contribution is a graph-based method for exact extraction of draining veins which, in combination with our earlier work on AVM detection, allows the AVM decomposition into veins, arteries and the nidus (with an emphasis on the draining veins). We validate the proposed approach on blood vessel phantoms representing the veins and the AVM structure, as well as on cerebral 3D digital rotational angiography (3DRA) images before and after embolization, paired with digital subtraction angiography (DSA) images. Results on AVM delineation show high correspondence to the ground truth structures and indicate potentials for use in surgical planning. [Display omitted] •Automatic localization and decomposition of brain arteriovenous malformation (AVM).•Image skeletonization used for automatic AVM localization and extraction.•Graph-based skeleton processing for extraction of draining veins.•Validation against ground truth segmentation, phantoms and post-embolization scans.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.12.011</identifier><identifier>PMID: 29291536</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3D rotational angiography ; Algorithms ; Aneurysms ; Angiography ; Arteries ; Arteriovenous malformation delineation ; Blood vessels ; Brain damage ; Brain injury ; Catheters ; Cerebral Angiography ; Cerebral blood flow ; Decomposition ; Delineation ; Digital imaging ; Embolization ; Female ; Ground truth ; Health risks ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Image skeletonization ; International conferences ; Intracranial Arteriovenous Malformations - diagnostic imaging ; Localization ; Male ; Medical image analysis ; Medical imaging ; Medical instruments ; Methods ; Morphology ; Neuroimaging ; Principal components analysis ; Software ; Surgery ; Veins ; Veins &amp; arteries ; Visualization</subject><ispartof>Computers in biology and medicine, 2018-02, Vol.93, p.93-105</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-199423433e20659aac70ce1daff372801de07945ab7c09079879b46e8129e1c13</citedby><cites>FETCH-LOGICAL-c369t-199423433e20659aac70ce1daff372801de07945ab7c09079879b46e8129e1c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2007509337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29291536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babin, D.</creatorcontrib><creatorcontrib>Pižurica, A.</creatorcontrib><creatorcontrib>Velicki, L.</creatorcontrib><creatorcontrib>Matić, V.</creatorcontrib><creatorcontrib>Galić, I.</creatorcontrib><creatorcontrib>Leventić, H.</creatorcontrib><creatorcontrib>Zlokolica, V.</creatorcontrib><creatorcontrib>Philips, W.</creatorcontrib><title>Skeletonization method for vessel delineation of arteriovenous malformation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization procedure. In order to successfully navigate the catheter and perform embolization, the segmented blood vessels need to be classified into feeding arteries, draining veins and the AVM nidus. For this reason we address here the AVM localization and vessel decomposition problem. We propose in this paper a novel AVM localization and vessel delineation method using ordered thinning-based skeletonization. The main focus of vessel delineation is the delineation of draining veins since it is essential for the embolization procedure. The main contribution is a graph-based method for exact extraction of draining veins which, in combination with our earlier work on AVM detection, allows the AVM decomposition into veins, arteries and the nidus (with an emphasis on the draining veins). We validate the proposed approach on blood vessel phantoms representing the veins and the AVM structure, as well as on cerebral 3D digital rotational angiography (3DRA) images before and after embolization, paired with digital subtraction angiography (DSA) images. Results on AVM delineation show high correspondence to the ground truth structures and indicate potentials for use in surgical planning. [Display omitted] •Automatic localization and decomposition of brain arteriovenous malformation (AVM).•Image skeletonization used for automatic AVM localization and extraction.•Graph-based skeleton processing for extraction of draining veins.•Validation against ground truth segmentation, phantoms and post-embolization scans.</description><subject>3D rotational angiography</subject><subject>Algorithms</subject><subject>Aneurysms</subject><subject>Angiography</subject><subject>Arteries</subject><subject>Arteriovenous malformation delineation</subject><subject>Blood vessels</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Catheters</subject><subject>Cerebral Angiography</subject><subject>Cerebral blood flow</subject><subject>Decomposition</subject><subject>Delineation</subject><subject>Digital imaging</subject><subject>Embolization</subject><subject>Female</subject><subject>Ground truth</subject><subject>Health risks</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Image skeletonization</subject><subject>International conferences</subject><subject>Intracranial Arteriovenous Malformations - diagnostic imaging</subject><subject>Localization</subject><subject>Male</subject><subject>Medical image analysis</subject><subject>Medical imaging</subject><subject>Medical instruments</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Principal components analysis</subject><subject>Software</subject><subject>Surgery</subject><subject>Veins</subject><subject>Veins &amp; arteries</subject><subject>Visualization</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtOwzAQRS0EglL4BRSJdcKMnZeXgHiJSiyAteU6E-GSxMVOK8HX49Iilqw80j3jqzmMJQgZApYXi8y4fjm3rqcm44BVhjwDxD02wbqSKRQi32cTAIQ0r3lxxI5DWABADgIO2RGXXGIhygl7fH6njkY32C89WjckPY1vrkla55M1hUBd0lBnB9qmrk20H8lbt6bBrULS6y6i_U96wg5a3QU63b1T9np783J9n86e7h6uL2epEaUcU5Qy5yIXgjiUhdTaVGAIG922ouI1YENQybzQ88qAjGO8aJ6XVCOXhAbFlJ1v_11697GiMKqFW_khVioOUBUghagiVW8p410Inlq19LbX_lMhqI1FtVB_FtXGokKuosW4erYrWM032e_ir7YIXG0BimeuLXkVjKXBUGM9mVE1zv7f8g1f-4iO</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Babin, D.</creator><creator>Pižurica, A.</creator><creator>Velicki, L.</creator><creator>Matić, V.</creator><creator>Galić, I.</creator><creator>Leventić, H.</creator><creator>Zlokolica, V.</creator><creator>Philips, W.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180201</creationdate><title>Skeletonization method for vessel delineation of arteriovenous malformation</title><author>Babin, D. ; Pižurica, A. ; Velicki, L. ; Matić, V. ; Galić, I. ; Leventić, H. ; Zlokolica, V. ; Philips, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-199423433e20659aac70ce1daff372801de07945ab7c09079879b46e8129e1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D rotational angiography</topic><topic>Algorithms</topic><topic>Aneurysms</topic><topic>Angiography</topic><topic>Arteries</topic><topic>Arteriovenous malformation delineation</topic><topic>Blood vessels</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Catheters</topic><topic>Cerebral Angiography</topic><topic>Cerebral blood flow</topic><topic>Decomposition</topic><topic>Delineation</topic><topic>Digital imaging</topic><topic>Embolization</topic><topic>Female</topic><topic>Ground truth</topic><topic>Health risks</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Image skeletonization</topic><topic>International conferences</topic><topic>Intracranial Arteriovenous Malformations - diagnostic imaging</topic><topic>Localization</topic><topic>Male</topic><topic>Medical image analysis</topic><topic>Medical imaging</topic><topic>Medical instruments</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Principal components analysis</topic><topic>Software</topic><topic>Surgery</topic><topic>Veins</topic><topic>Veins &amp; arteries</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babin, D.</creatorcontrib><creatorcontrib>Pižurica, A.</creatorcontrib><creatorcontrib>Velicki, L.</creatorcontrib><creatorcontrib>Matić, V.</creatorcontrib><creatorcontrib>Galić, I.</creatorcontrib><creatorcontrib>Leventić, H.</creatorcontrib><creatorcontrib>Zlokolica, V.</creatorcontrib><creatorcontrib>Philips, W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babin, D.</au><au>Pižurica, A.</au><au>Velicki, L.</au><au>Matić, V.</au><au>Galić, I.</au><au>Leventić, H.</au><au>Zlokolica, V.</au><au>Philips, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletonization method for vessel delineation of arteriovenous malformation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>93</volume><spage>93</spage><epage>105</epage><pages>93-105</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization procedure. In order to successfully navigate the catheter and perform embolization, the segmented blood vessels need to be classified into feeding arteries, draining veins and the AVM nidus. For this reason we address here the AVM localization and vessel decomposition problem. We propose in this paper a novel AVM localization and vessel delineation method using ordered thinning-based skeletonization. The main focus of vessel delineation is the delineation of draining veins since it is essential for the embolization procedure. The main contribution is a graph-based method for exact extraction of draining veins which, in combination with our earlier work on AVM detection, allows the AVM decomposition into veins, arteries and the nidus (with an emphasis on the draining veins). We validate the proposed approach on blood vessel phantoms representing the veins and the AVM structure, as well as on cerebral 3D digital rotational angiography (3DRA) images before and after embolization, paired with digital subtraction angiography (DSA) images. Results on AVM delineation show high correspondence to the ground truth structures and indicate potentials for use in surgical planning. [Display omitted] •Automatic localization and decomposition of brain arteriovenous malformation (AVM).•Image skeletonization used for automatic AVM localization and extraction.•Graph-based skeleton processing for extraction of draining veins.•Validation against ground truth segmentation, phantoms and post-embolization scans.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>29291536</pmid><doi>10.1016/j.compbiomed.2017.12.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2018-02, Vol.93, p.93-105
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_journals_2007509337
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects 3D rotational angiography
Algorithms
Aneurysms
Angiography
Arteries
Arteriovenous malformation delineation
Blood vessels
Brain damage
Brain injury
Catheters
Cerebral Angiography
Cerebral blood flow
Decomposition
Delineation
Digital imaging
Embolization
Female
Ground truth
Health risks
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Image skeletonization
International conferences
Intracranial Arteriovenous Malformations - diagnostic imaging
Localization
Male
Medical image analysis
Medical imaging
Medical instruments
Methods
Morphology
Neuroimaging
Principal components analysis
Software
Surgery
Veins
Veins & arteries
Visualization
title Skeletonization method for vessel delineation of arteriovenous malformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletonization%20method%20for%20vessel%20delineation%20of%20arteriovenous%20malformation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Babin,%20D.&rft.date=2018-02-01&rft.volume=93&rft.spage=93&rft.epage=105&rft.pages=93-105&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.12.011&rft_dat=%3Cproquest_cross%3E2007509337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007509337&rft_id=info:pmid/29291536&rft_els_id=S0010482517304080&rfr_iscdi=true