Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network

This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO 2 ) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2018-03, Vol.131 (3), p.2741-2748
Hauptverfasser: Ahmadi Nadooshan, Afshin, Hemmat Esfe, Mohammad, Afrand, Masoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2748
container_issue 3
container_start_page 2741
container_title Journal of thermal analysis and calorimetry
container_volume 131
creator Ahmadi Nadooshan, Afshin
Hemmat Esfe, Mohammad
Afrand, Masoud
description This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO 2 ) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temperatures and shear rate were considered as input variables for ANN, and relative viscosity was output parameter. In order to predict viscosity data of SiO 2 -MWCNTs (90:10%)/10W40, a comparison between the experimental viscosity and that obtained from previous theoretical models was made. This comparison showed that none of the previous theoretical models were able to estimate the viscosity data. Therefore, a neural network was designed to predict the relative viscosity of hybrid nanolubricant. Artificial neural network function was utilized for viscosity data approximation with excellent precision as R 2 value was 0.9948.
doi_str_mv 10.1007/s10973-017-6688-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007462041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007462041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d285b67f2ca35aa9cb3e9e805405294f28aa98705c1926ee2e137bb95455f793</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz3UnSdM2R1n8B6sruLDHkLZpm7UmmrTKfnuzVPDkaR7De2-YH0KXBK4JQL4IBETOEiB5kmVFkbAjNCM8Cipodhw1izojHE7RWQg7ABACyAx1L17XphqMs9g12Hfa9a41lepxqTv1ZZw_7F_NmiZP2-XzJiwIbFPA3b70psZWWdePUVbKDrjc41oH01pjW2z16GON1cO382_n6KRRfdAXv3OONne3m-VDslrfPy5vVknFOBuSmha8zPKGVopxpURVMi10ATwFTkXa0CIuixx4ReJjWlNNWF6WgqecN7lgc3Q11X549znqMMidG72NFyWNnNKMQkqii0yuyrsQvG7khzfvyu8lAXngKSeeMvKUB56SxQydMiF6bav9X_P_oR_7OHei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007462041</pqid></control><display><type>article</type><title>Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network</title><source>SpringerLink Journals</source><creator>Ahmadi Nadooshan, Afshin ; Hemmat Esfe, Mohammad ; Afrand, Masoud</creator><creatorcontrib>Ahmadi Nadooshan, Afshin ; Hemmat Esfe, Mohammad ; Afrand, Masoud</creatorcontrib><description>This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO 2 ) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temperatures and shear rate were considered as input variables for ANN, and relative viscosity was output parameter. In order to predict viscosity data of SiO 2 -MWCNTs (90:10%)/10W40, a comparison between the experimental viscosity and that obtained from previous theoretical models was made. This comparison showed that none of the previous theoretical models were able to estimate the viscosity data. Therefore, a neural network was designed to predict the relative viscosity of hybrid nanolubricant. Artificial neural network function was utilized for viscosity data approximation with excellent precision as R 2 value was 0.9948.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6688-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Concentration (composition) ; Inorganic Chemistry ; Mathematical models ; Measurement Science and Instrumentation ; Multi wall carbon nanotubes ; Nanomaterials ; Neural networks ; Order parameters ; Physical Chemistry ; Polymer Sciences ; Rheological properties ; Shear rate ; Silicon dioxide ; Viscosity</subject><ispartof>Journal of thermal analysis and calorimetry, 2018-03, Vol.131 (3), p.2741-2748</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d285b67f2ca35aa9cb3e9e805405294f28aa98705c1926ee2e137bb95455f793</citedby><cites>FETCH-LOGICAL-c353t-d285b67f2ca35aa9cb3e9e805405294f28aa98705c1926ee2e137bb95455f793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6688-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6688-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ahmadi Nadooshan, Afshin</creatorcontrib><creatorcontrib>Hemmat Esfe, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><title>Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO 2 ) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temperatures and shear rate were considered as input variables for ANN, and relative viscosity was output parameter. In order to predict viscosity data of SiO 2 -MWCNTs (90:10%)/10W40, a comparison between the experimental viscosity and that obtained from previous theoretical models was made. This comparison showed that none of the previous theoretical models were able to estimate the viscosity data. Therefore, a neural network was designed to predict the relative viscosity of hybrid nanolubricant. Artificial neural network function was utilized for viscosity data approximation with excellent precision as R 2 value was 0.9948.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Concentration (composition)</subject><subject>Inorganic Chemistry</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanomaterials</subject><subject>Neural networks</subject><subject>Order parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Shear rate</subject><subject>Silicon dioxide</subject><subject>Viscosity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz3UnSdM2R1n8B6sruLDHkLZpm7UmmrTKfnuzVPDkaR7De2-YH0KXBK4JQL4IBETOEiB5kmVFkbAjNCM8Cipodhw1izojHE7RWQg7ABACyAx1L17XphqMs9g12Hfa9a41lepxqTv1ZZw_7F_NmiZP2-XzJiwIbFPA3b70psZWWdePUVbKDrjc41oH01pjW2z16GON1cO382_n6KRRfdAXv3OONne3m-VDslrfPy5vVknFOBuSmha8zPKGVopxpURVMi10ATwFTkXa0CIuixx4ReJjWlNNWF6WgqecN7lgc3Q11X549znqMMidG72NFyWNnNKMQkqii0yuyrsQvG7khzfvyu8lAXngKSeeMvKUB56SxQydMiF6bav9X_P_oR_7OHei</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ahmadi Nadooshan, Afshin</creator><creator>Hemmat Esfe, Mohammad</creator><creator>Afrand, Masoud</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network</title><author>Ahmadi Nadooshan, Afshin ; Hemmat Esfe, Mohammad ; Afrand, Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d285b67f2ca35aa9cb3e9e805405294f28aa98705c1926ee2e137bb95455f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Concentration (composition)</topic><topic>Inorganic Chemistry</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanomaterials</topic><topic>Neural networks</topic><topic>Order parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Shear rate</topic><topic>Silicon dioxide</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi Nadooshan, Afshin</creatorcontrib><creatorcontrib>Hemmat Esfe, Mohammad</creatorcontrib><creatorcontrib>Afrand, Masoud</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi Nadooshan, Afshin</au><au>Hemmat Esfe, Mohammad</au><au>Afrand, Masoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>131</volume><issue>3</issue><spage>2741</spage><epage>2748</epage><pages>2741-2748</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO 2 ) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temperatures and shear rate were considered as input variables for ANN, and relative viscosity was output parameter. In order to predict viscosity data of SiO 2 -MWCNTs (90:10%)/10W40, a comparison between the experimental viscosity and that obtained from previous theoretical models was made. This comparison showed that none of the previous theoretical models were able to estimate the viscosity data. Therefore, a neural network was designed to predict the relative viscosity of hybrid nanolubricant. Artificial neural network function was utilized for viscosity data approximation with excellent precision as R 2 value was 0.9948.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6688-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2018-03, Vol.131 (3), p.2741-2748
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2007462041
source SpringerLink Journals
subjects Analytical Chemistry
Artificial neural networks
Chemistry
Chemistry and Materials Science
Concentration (composition)
Inorganic Chemistry
Mathematical models
Measurement Science and Instrumentation
Multi wall carbon nanotubes
Nanomaterials
Neural networks
Order parameters
Physical Chemistry
Polymer Sciences
Rheological properties
Shear rate
Silicon dioxide
Viscosity
title Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20rheological%20behavior%20of%20SiO2-MWCNTs/10W40%20hybrid%20nanolubricant%20by%20designing%20neural%20network&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ahmadi%20Nadooshan,%20Afshin&rft.date=2018-03-01&rft.volume=131&rft.issue=3&rft.spage=2741&rft.epage=2748&rft.pages=2741-2748&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6688-3&rft_dat=%3Cproquest_cross%3E2007462041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007462041&rft_id=info:pmid/&rfr_iscdi=true