Dynamics of Two Point Vortices in an External Compressible Shear Flow

This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2017-12, Vol.22 (8), p.893-908
Hauptverfasser: Vetchanin, Evgeny V., Mamaev, Ivan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue 8
container_start_page 893
container_title Regular & chaotic dynamics
container_volume 22
creator Vetchanin, Evgeny V.
Mamaev, Ivan S.
description This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.
doi_str_mv 10.1134/S1560354717080019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007459046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007459046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLcFz9G3_7LpUWqrQkGh1WvY7L5oSpqtuym1396ECAri6Q3Db4bHEHLJ4JoxIW-WTKUglNRMQwbAJkdk1FtJ7x3_0qfkLMZ1R6hMw4jM7g6N2VQ2Ul_S1d7TZ181LX31oa0sRlo11DR09tliaExNp36zDRhjVdRIl-9oAp3Xfn9OTkpTR7z4vmPyMp-tpg_J4un-cXq7SKxgaZukwhldcsGFsIUrGEqQLrUOmdaca1Bo00JlKjNFpqRzXDoU2cSgU4oJcGJMrobebfAfO4xtvva7_rGYcwAt1QRk2lFsoGzwMQYs822oNiYccgZ5v1b-Z60uw4dM7NjmDcNP8_-hL01TamI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007459046</pqid></control><display><type>article</type><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</creator><creatorcontrib>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</creatorcontrib><description>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354717080019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bifurcations ; Compressibility ; Dynamical Systems and Ergodic Theory ; Fluid dynamics ; Fluid flow ; Mathematics ; Mathematics and Statistics ; Poincare maps ; Saddle points ; Shear flow ; Vortices ; Vorticity</subject><ispartof>Regular &amp; chaotic dynamics, 2017-12, Vol.22 (8), p.893-908</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</citedby><cites>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354717080019$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354717080019$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vetchanin, Evgeny V.</creatorcontrib><creatorcontrib>Mamaev, Ivan S.</creatorcontrib><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><title>Regular &amp; chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</description><subject>Bifurcations</subject><subject>Compressibility</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Poincare maps</subject><subject>Saddle points</subject><subject>Shear flow</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLcFz9G3_7LpUWqrQkGh1WvY7L5oSpqtuym1396ECAri6Q3Db4bHEHLJ4JoxIW-WTKUglNRMQwbAJkdk1FtJ7x3_0qfkLMZ1R6hMw4jM7g6N2VQ2Ul_S1d7TZ181LX31oa0sRlo11DR09tliaExNp36zDRhjVdRIl-9oAp3Xfn9OTkpTR7z4vmPyMp-tpg_J4un-cXq7SKxgaZukwhldcsGFsIUrGEqQLrUOmdaca1Bo00JlKjNFpqRzXDoU2cSgU4oJcGJMrobebfAfO4xtvva7_rGYcwAt1QRk2lFsoGzwMQYs822oNiYccgZ5v1b-Z60uw4dM7NjmDcNP8_-hL01TamI</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Vetchanin, Evgeny V.</creator><creator>Mamaev, Ivan S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><author>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bifurcations</topic><topic>Compressibility</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Poincare maps</topic><topic>Saddle points</topic><topic>Shear flow</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetchanin, Evgeny V.</creatorcontrib><creatorcontrib>Mamaev, Ivan S.</creatorcontrib><collection>CrossRef</collection><jtitle>Regular &amp; chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetchanin, Evgeny V.</au><au>Mamaev, Ivan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Two Point Vortices in an External Compressible Shear Flow</atitle><jtitle>Regular &amp; chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>22</volume><issue>8</issue><spage>893</spage><epage>908</epage><pages>893-908</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354717080019</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1560-3547
ispartof Regular & chaotic dynamics, 2017-12, Vol.22 (8), p.893-908
issn 1560-3547
1560-3547
1468-4845
language eng
recordid cdi_proquest_journals_2007459046
source SpringerLink Journals - AutoHoldings
subjects Bifurcations
Compressibility
Dynamical Systems and Ergodic Theory
Fluid dynamics
Fluid flow
Mathematics
Mathematics and Statistics
Poincare maps
Saddle points
Shear flow
Vortices
Vorticity
title Dynamics of Two Point Vortices in an External Compressible Shear Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Two%20Point%20Vortices%20in%20an%20External%20Compressible%20Shear%20Flow&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Vetchanin,%20Evgeny%20V.&rft.date=2017-12-01&rft.volume=22&rft.issue=8&rft.spage=893&rft.epage=908&rft.pages=893-908&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354717080019&rft_dat=%3Cproquest_cross%3E2007459046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007459046&rft_id=info:pmid/&rfr_iscdi=true