Dynamics of Two Point Vortices in an External Compressible Shear Flow
This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2017-12, Vol.22 (8), p.893-908 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 908 |
---|---|
container_issue | 8 |
container_start_page | 893 |
container_title | Regular & chaotic dynamics |
container_volume | 22 |
creator | Vetchanin, Evgeny V. Mamaev, Ivan S. |
description | This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration. |
doi_str_mv | 10.1134/S1560354717080019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2007459046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007459046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLcFz9G3_7LpUWqrQkGh1WvY7L5oSpqtuym1396ECAri6Q3Db4bHEHLJ4JoxIW-WTKUglNRMQwbAJkdk1FtJ7x3_0qfkLMZ1R6hMw4jM7g6N2VQ2Ul_S1d7TZ181LX31oa0sRlo11DR09tliaExNp36zDRhjVdRIl-9oAp3Xfn9OTkpTR7z4vmPyMp-tpg_J4un-cXq7SKxgaZukwhldcsGFsIUrGEqQLrUOmdaca1Bo00JlKjNFpqRzXDoU2cSgU4oJcGJMrobebfAfO4xtvva7_rGYcwAt1QRk2lFsoGzwMQYs822oNiYccgZ5v1b-Z60uw4dM7NjmDcNP8_-hL01TamI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007459046</pqid></control><display><type>article</type><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</creator><creatorcontrib>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</creatorcontrib><description>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354717080019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bifurcations ; Compressibility ; Dynamical Systems and Ergodic Theory ; Fluid dynamics ; Fluid flow ; Mathematics ; Mathematics and Statistics ; Poincare maps ; Saddle points ; Shear flow ; Vortices ; Vorticity</subject><ispartof>Regular & chaotic dynamics, 2017-12, Vol.22 (8), p.893-908</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</citedby><cites>FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354717080019$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354717080019$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vetchanin, Evgeny V.</creatorcontrib><creatorcontrib>Mamaev, Ivan S.</creatorcontrib><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><title>Regular & chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</description><subject>Bifurcations</subject><subject>Compressibility</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Poincare maps</subject><subject>Saddle points</subject><subject>Shear flow</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLcFz9G3_7LpUWqrQkGh1WvY7L5oSpqtuym1396ECAri6Q3Db4bHEHLJ4JoxIW-WTKUglNRMQwbAJkdk1FtJ7x3_0qfkLMZ1R6hMw4jM7g6N2VQ2Ul_S1d7TZ181LX31oa0sRlo11DR09tliaExNp36zDRhjVdRIl-9oAp3Xfn9OTkpTR7z4vmPyMp-tpg_J4un-cXq7SKxgaZukwhldcsGFsIUrGEqQLrUOmdaca1Bo00JlKjNFpqRzXDoU2cSgU4oJcGJMrobebfAfO4xtvva7_rGYcwAt1QRk2lFsoGzwMQYs822oNiYccgZ5v1b-Z60uw4dM7NjmDcNP8_-hL01TamI</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Vetchanin, Evgeny V.</creator><creator>Mamaev, Ivan S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Dynamics of Two Point Vortices in an External Compressible Shear Flow</title><author>Vetchanin, Evgeny V. ; Mamaev, Ivan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63da7f23233cbdb1e404d6cde17722705ec6b5858ab854dd24de389aed55130d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bifurcations</topic><topic>Compressibility</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Poincare maps</topic><topic>Saddle points</topic><topic>Shear flow</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetchanin, Evgeny V.</creatorcontrib><creatorcontrib>Mamaev, Ivan S.</creatorcontrib><collection>CrossRef</collection><jtitle>Regular & chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetchanin, Evgeny V.</au><au>Mamaev, Ivan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Two Point Vortices in an External Compressible Shear Flow</atitle><jtitle>Regular & chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>22</volume><issue>8</issue><spage>893</spage><epage>908</epage><pages>893-908</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354717080019</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1560-3547 |
ispartof | Regular & chaotic dynamics, 2017-12, Vol.22 (8), p.893-908 |
issn | 1560-3547 1560-3547 1468-4845 |
language | eng |
recordid | cdi_proquest_journals_2007459046 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bifurcations Compressibility Dynamical Systems and Ergodic Theory Fluid dynamics Fluid flow Mathematics Mathematics and Statistics Poincare maps Saddle points Shear flow Vortices Vorticity |
title | Dynamics of Two Point Vortices in an External Compressible Shear Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Two%20Point%20Vortices%20in%20an%20External%20Compressible%20Shear%20Flow&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Vetchanin,%20Evgeny%20V.&rft.date=2017-12-01&rft.volume=22&rft.issue=8&rft.spage=893&rft.epage=908&rft.pages=893-908&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354717080019&rft_dat=%3Cproquest_cross%3E2007459046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007459046&rft_id=info:pmid/&rfr_iscdi=true |