Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions

We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2018-03, Vol.173 (3), p.1-16, Article 22
Hauptverfasser: Sharygin, Igor S., Shatskiy, Anton, Litasov, Konstantin D., Golovin, Alexander V., Ohtani, Eiji, Pokhilenko, Nikolay P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 3
container_start_page 1
container_title Contributions to mineralogy and petrology
container_volume 173
creator Sharygin, Igor S.
Shatskiy, Anton
Litasov, Konstantin D.
Golovin, Alexander V.
Ohtani, Eiji
Pokhilenko, Nikolay P.
description We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) > 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg 2 SiO 4 (olivine) + 6CaCO 3 (liquid) = Ca 3 MgSi 2 O 8 (merwinite) + 3CaMg(CO 3 ) 2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.
doi_str_mv 10.1007/s00410-017-1432-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2007416026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A528612110</galeid><sourcerecordid>A528612110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-d99df4e373e7b504c34c9a1927b8399e944efa163cc646a317f9ef029df1407c3</originalsourceid><addsrcrecordid>eNp1ksFu3CAQhlHVSN0meYDekHqtt2BYs_QWrdp0pUjtoTkjFsMukQ0uYEV9mzxL36Pv0rFdKYq0FQeYme-fGWAQekfJmhIiPmZCOCUVoaKinNUVe4VW84HIRrxGK0IgKqSUb9DbnB8I2Fu5WaE_-1Bs0qb4GHB0eLDJt7H4YvGjLye801Xy5oSNTocY9BzobVewLpitKdahxc168_vp9rv-hPf90Hmj52QuJiDTow-TBqx-8fuAxwHK4F6H0tkPc4oJLqcpddE5TqTBMfmjn5vK46GDZmIeTtCewa3XfQxtftliHqdCgPtgujFDrXyFLpzusr3-t1-i-y-ff-y-Vnffbve7m7tKc85L1UrZOm6ZYFYcNoQbxo3UVNbisGVSWsm5dZo2zJiGN5pR4aR1pAYV5UQYdoneL3mHFH-ONhf1EMcUoKSq4Xc4bUjdPFNH3Vnlg4sFXr732aibTb1taE0pAao6Qx1tgG_qYrDOg_sFvz7Dw2pt781ZAV0EJsWck3VqSL7X6ZeiRE3DpJZhUjBMapohxUBTL5oMbDja9HzB_4v-AiSnzpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007416026</pqid></control><display><type>article</type><title>Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharygin, Igor S. ; Shatskiy, Anton ; Litasov, Konstantin D. ; Golovin, Alexander V. ; Ohtani, Eiji ; Pokhilenko, Nikolay P.</creator><creatorcontrib>Sharygin, Igor S. ; Shatskiy, Anton ; Litasov, Konstantin D. ; Golovin, Alexander V. ; Ohtani, Eiji ; Pokhilenko, Nikolay P.</creatorcontrib><description>We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) &gt; 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg 2 SiO 4 (olivine) + 6CaCO 3 (liquid) = Ca 3 MgSi 2 O 8 (merwinite) + 3CaMg(CO 3 ) 2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-017-1432-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calcium ; Carbonates ; Crystals ; Diamonds ; Earth and Environmental Science ; Earth mantle ; Earth Sciences ; Experiments ; Geology ; Grain boundaries ; Homogeneous mixtures ; Inclusions ; Magma ; Mantle (Geology) ; Melts ; Merwinite ; Mineral Resources ; Mineralogy ; Oceanic crust ; Olivine ; Original Paper ; Peridotite ; Petrology ; Silicates ; Silicon ; Single crystals ; Upper mantle</subject><ispartof>Contributions to mineralogy and petrology, 2018-03, Vol.173 (3), p.1-16, Article 22</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Contributions to Mineralogy and Petrology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-d99df4e373e7b504c34c9a1927b8399e944efa163cc646a317f9ef029df1407c3</citedby><cites>FETCH-LOGICAL-a444t-d99df4e373e7b504c34c9a1927b8399e944efa163cc646a317f9ef029df1407c3</cites><orcidid>0000-0002-2722-4958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-017-1432-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-017-1432-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Sharygin, Igor S.</creatorcontrib><creatorcontrib>Shatskiy, Anton</creatorcontrib><creatorcontrib>Litasov, Konstantin D.</creatorcontrib><creatorcontrib>Golovin, Alexander V.</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Pokhilenko, Nikolay P.</creatorcontrib><title>Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) &gt; 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg 2 SiO 4 (olivine) + 6CaCO 3 (liquid) = Ca 3 MgSi 2 O 8 (merwinite) + 3CaMg(CO 3 ) 2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.</description><subject>Calcium</subject><subject>Carbonates</subject><subject>Crystals</subject><subject>Diamonds</subject><subject>Earth and Environmental Science</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Experiments</subject><subject>Geology</subject><subject>Grain boundaries</subject><subject>Homogeneous mixtures</subject><subject>Inclusions</subject><subject>Magma</subject><subject>Mantle (Geology)</subject><subject>Melts</subject><subject>Merwinite</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Oceanic crust</subject><subject>Olivine</subject><subject>Original Paper</subject><subject>Peridotite</subject><subject>Petrology</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Upper mantle</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ksFu3CAQhlHVSN0meYDekHqtt2BYs_QWrdp0pUjtoTkjFsMukQ0uYEV9mzxL36Pv0rFdKYq0FQeYme-fGWAQekfJmhIiPmZCOCUVoaKinNUVe4VW84HIRrxGK0IgKqSUb9DbnB8I2Fu5WaE_-1Bs0qb4GHB0eLDJt7H4YvGjLye801Xy5oSNTocY9BzobVewLpitKdahxc168_vp9rv-hPf90Hmj52QuJiDTow-TBqx-8fuAxwHK4F6H0tkPc4oJLqcpddE5TqTBMfmjn5vK46GDZmIeTtCewa3XfQxtftliHqdCgPtgujFDrXyFLpzusr3-t1-i-y-ff-y-Vnffbve7m7tKc85L1UrZOm6ZYFYcNoQbxo3UVNbisGVSWsm5dZo2zJiGN5pR4aR1pAYV5UQYdoneL3mHFH-ONhf1EMcUoKSq4Xc4bUjdPFNH3Vnlg4sFXr732aibTb1taE0pAao6Qx1tgG_qYrDOg_sFvz7Dw2pt781ZAV0EJsWck3VqSL7X6ZeiRE3DpJZhUjBMapohxUBTL5oMbDja9HzB_4v-AiSnzpY</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Sharygin, Igor S.</creator><creator>Shatskiy, Anton</creator><creator>Litasov, Konstantin D.</creator><creator>Golovin, Alexander V.</creator><creator>Ohtani, Eiji</creator><creator>Pokhilenko, Nikolay P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-2722-4958</orcidid></search><sort><creationdate>20180301</creationdate><title>Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions</title><author>Sharygin, Igor S. ; Shatskiy, Anton ; Litasov, Konstantin D. ; Golovin, Alexander V. ; Ohtani, Eiji ; Pokhilenko, Nikolay P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-d99df4e373e7b504c34c9a1927b8399e944efa163cc646a317f9ef029df1407c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calcium</topic><topic>Carbonates</topic><topic>Crystals</topic><topic>Diamonds</topic><topic>Earth and Environmental Science</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Experiments</topic><topic>Geology</topic><topic>Grain boundaries</topic><topic>Homogeneous mixtures</topic><topic>Inclusions</topic><topic>Magma</topic><topic>Mantle (Geology)</topic><topic>Melts</topic><topic>Merwinite</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Oceanic crust</topic><topic>Olivine</topic><topic>Original Paper</topic><topic>Peridotite</topic><topic>Petrology</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Upper mantle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharygin, Igor S.</creatorcontrib><creatorcontrib>Shatskiy, Anton</creatorcontrib><creatorcontrib>Litasov, Konstantin D.</creatorcontrib><creatorcontrib>Golovin, Alexander V.</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Pokhilenko, Nikolay P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharygin, Igor S.</au><au>Shatskiy, Anton</au><au>Litasov, Konstantin D.</au><au>Golovin, Alexander V.</au><au>Ohtani, Eiji</au><au>Pokhilenko, Nikolay P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>173</volume><issue>3</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>22</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) &gt; 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg 2 SiO 4 (olivine) + 6CaCO 3 (liquid) = Ca 3 MgSi 2 O 8 (merwinite) + 3CaMg(CO 3 ) 2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-017-1432-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2722-4958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2018-03, Vol.173 (3), p.1-16, Article 22
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_2007416026
source SpringerLink Journals - AutoHoldings
subjects Calcium
Carbonates
Crystals
Diamonds
Earth and Environmental Science
Earth mantle
Earth Sciences
Experiments
Geology
Grain boundaries
Homogeneous mixtures
Inclusions
Magma
Mantle (Geology)
Melts
Merwinite
Mineral Resources
Mineralogy
Oceanic crust
Olivine
Original Paper
Peridotite
Petrology
Silicates
Silicon
Single crystals
Upper mantle
title Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20peridotite%20with%20Ca-rich%20carbonatite%20melt%20at%203.1%20and%206.5%C2%A0GPa:%20Implication%20for%20merwinite%20formation%20in%20upper%20mantle,%20and%20for%20the%20metasomatic%20origin%20of%20sublithospheric%20diamonds%20with%20Ca-rich%20suite%20of%20inclusions&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Sharygin,%20Igor%20S.&rft.date=2018-03-01&rft.volume=173&rft.issue=3&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=22&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-017-1432-3&rft_dat=%3Cgale_proqu%3EA528612110%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007416026&rft_id=info:pmid/&rft_galeid=A528612110&rfr_iscdi=true