Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation
Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-05, Vol.27 (5), p.2393-2407 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2407 |
---|---|
container_issue | 5 |
container_start_page | 2393 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Le, T. Hoang Ngan Kha Gia Quach Khoa Luu Chi Nhan Duong Savvides, Marios |
description | Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches. |
doi_str_mv | 10.1109/TIP.2018.2794205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2007232373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8259369</ieee_id><sourcerecordid>2007232373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</originalsourceid><addsrcrecordid>eNpdkEtLJDEURoPMYLePvTAwFLhxU-3NO1mKzqjQqPhYuShS6Vs91VOPNqlS_PdGusfFrO6FnO_j5hByRGFGKdjTx-u7GQNqZkxbwUDukCm1guYAgn1LO0idayrshOzFuAKgQlK1SybMWiu4ZFPyfI9VH9qxcUPdLbM5vmKTPeAQMxezC8R1do9-DAG7IbvBMbgmjeGtD3-zs_U69M7_yYY-JVrXDbVPy7JNbGrruwPyvXJNxMPt3CdPv389nl_l89vL6_Ozee650EPupffcUaMoiAVKLhUobi0oy5XR3omyssYqJXQpSgvMLLhXxpbIjQZRKb5PTja96Z6XEeNQtHX02DSuw36MBQNluKCSm4Qe_4eu-jF06bpEgWaccc0TBRvKhz7GgFWxDnXrwntBofgUXyTxxaf4Yis-RX5ui8eyxcVX4J_pBPzYADUifj0bJtMvLf8AQDKFFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007232373</pqid></control><display><type>article</type><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</creator><creatorcontrib>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</creatorcontrib><description>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2794205</identifier><identifier>PMID: 29994352</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contours ; Computing time ; Contours ; deep learning ; Deformation ; Energy conservation ; Evolution ; Image segmentation ; Level set ; Logic gates ; Machine learning ; Neural networks ; Recurrent neural networks ; recurrent neuron network ; Semantic segmentation ; Semantics ; Shape</subject><ispartof>IEEE transactions on image processing, 2018-05, Vol.27 (5), p.2393-2407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</citedby><cites>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</cites><orcidid>0000-0003-2571-0511 ; 0000-0003-2104-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8259369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8259369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, T. Hoang Ngan</creatorcontrib><creatorcontrib>Kha Gia Quach</creatorcontrib><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Chi Nhan Duong</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</description><subject>Active contours</subject><subject>Computing time</subject><subject>Contours</subject><subject>deep learning</subject><subject>Deformation</subject><subject>Energy conservation</subject><subject>Evolution</subject><subject>Image segmentation</subject><subject>Level set</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>recurrent neuron network</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Shape</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLJDEURoPMYLePvTAwFLhxU-3NO1mKzqjQqPhYuShS6Vs91VOPNqlS_PdGusfFrO6FnO_j5hByRGFGKdjTx-u7GQNqZkxbwUDukCm1guYAgn1LO0idayrshOzFuAKgQlK1SybMWiu4ZFPyfI9VH9qxcUPdLbM5vmKTPeAQMxezC8R1do9-DAG7IbvBMbgmjeGtD3-zs_U69M7_yYY-JVrXDbVPy7JNbGrruwPyvXJNxMPt3CdPv389nl_l89vL6_Ozee650EPupffcUaMoiAVKLhUobi0oy5XR3omyssYqJXQpSgvMLLhXxpbIjQZRKb5PTja96Z6XEeNQtHX02DSuw36MBQNluKCSm4Qe_4eu-jF06bpEgWaccc0TBRvKhz7GgFWxDnXrwntBofgUXyTxxaf4Yis-RX5ui8eyxcVX4J_pBPzYADUifj0bJtMvLf8AQDKFFA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Le, T. Hoang Ngan</creator><creator>Kha Gia Quach</creator><creator>Khoa Luu</creator><creator>Chi Nhan Duong</creator><creator>Savvides, Marios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2571-0511</orcidid><orcidid>https://orcid.org/0000-0003-2104-0901</orcidid></search><sort><creationdate>20180501</creationdate><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><author>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active contours</topic><topic>Computing time</topic><topic>Contours</topic><topic>deep learning</topic><topic>Deformation</topic><topic>Energy conservation</topic><topic>Evolution</topic><topic>Image segmentation</topic><topic>Level set</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>recurrent neuron network</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, T. Hoang Ngan</creatorcontrib><creatorcontrib>Kha Gia Quach</creatorcontrib><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Chi Nhan Duong</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, T. Hoang Ngan</au><au>Kha Gia Quach</au><au>Khoa Luu</au><au>Chi Nhan Duong</au><au>Savvides, Marios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>27</volume><issue>5</issue><spage>2393</spage><epage>2407</epage><pages>2393-2407</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994352</pmid><doi>10.1109/TIP.2018.2794205</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2571-0511</orcidid><orcidid>https://orcid.org/0000-0003-2104-0901</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-05, Vol.27 (5), p.2393-2407 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2007232373 |
source | IEEE Electronic Library (IEL) |
subjects | Active contours Computing time Contours deep learning Deformation Energy conservation Evolution Image segmentation Level set Logic gates Machine learning Neural networks Recurrent neural networks recurrent neuron network Semantic segmentation Semantics Shape |
title | Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reformulating%20Level%20Sets%20as%20Deep%20Recurrent%20Neural%20Network%20Approach%20to%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Le,%20T.%20Hoang%20Ngan&rft.date=2018-05-01&rft.volume=27&rft.issue=5&rft.spage=2393&rft.epage=2407&rft.pages=2393-2407&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2794205&rft_dat=%3Cproquest_RIE%3E2007232373%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007232373&rft_id=info:pmid/29994352&rft_ieee_id=8259369&rfr_iscdi=true |