Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation

Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-05, Vol.27 (5), p.2393-2407
Hauptverfasser: Le, T. Hoang Ngan, Kha Gia Quach, Khoa Luu, Chi Nhan Duong, Savvides, Marios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2407
container_issue 5
container_start_page 2393
container_title IEEE transactions on image processing
container_volume 27
creator Le, T. Hoang Ngan
Kha Gia Quach
Khoa Luu
Chi Nhan Duong
Savvides, Marios
description Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.
doi_str_mv 10.1109/TIP.2018.2794205
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2007232373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8259369</ieee_id><sourcerecordid>2007232373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</originalsourceid><addsrcrecordid>eNpdkEtLJDEURoPMYLePvTAwFLhxU-3NO1mKzqjQqPhYuShS6Vs91VOPNqlS_PdGusfFrO6FnO_j5hByRGFGKdjTx-u7GQNqZkxbwUDukCm1guYAgn1LO0idayrshOzFuAKgQlK1SybMWiu4ZFPyfI9VH9qxcUPdLbM5vmKTPeAQMxezC8R1do9-DAG7IbvBMbgmjeGtD3-zs_U69M7_yYY-JVrXDbVPy7JNbGrruwPyvXJNxMPt3CdPv389nl_l89vL6_Ozee650EPupffcUaMoiAVKLhUobi0oy5XR3omyssYqJXQpSgvMLLhXxpbIjQZRKb5PTja96Z6XEeNQtHX02DSuw36MBQNluKCSm4Qe_4eu-jF06bpEgWaccc0TBRvKhz7GgFWxDnXrwntBofgUXyTxxaf4Yis-RX5ui8eyxcVX4J_pBPzYADUifj0bJtMvLf8AQDKFFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007232373</pqid></control><display><type>article</type><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</creator><creatorcontrib>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</creatorcontrib><description>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2794205</identifier><identifier>PMID: 29994352</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contours ; Computing time ; Contours ; deep learning ; Deformation ; Energy conservation ; Evolution ; Image segmentation ; Level set ; Logic gates ; Machine learning ; Neural networks ; Recurrent neural networks ; recurrent neuron network ; Semantic segmentation ; Semantics ; Shape</subject><ispartof>IEEE transactions on image processing, 2018-05, Vol.27 (5), p.2393-2407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</citedby><cites>FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</cites><orcidid>0000-0003-2571-0511 ; 0000-0003-2104-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8259369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8259369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, T. Hoang Ngan</creatorcontrib><creatorcontrib>Kha Gia Quach</creatorcontrib><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Chi Nhan Duong</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</description><subject>Active contours</subject><subject>Computing time</subject><subject>Contours</subject><subject>deep learning</subject><subject>Deformation</subject><subject>Energy conservation</subject><subject>Evolution</subject><subject>Image segmentation</subject><subject>Level set</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>recurrent neuron network</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Shape</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLJDEURoPMYLePvTAwFLhxU-3NO1mKzqjQqPhYuShS6Vs91VOPNqlS_PdGusfFrO6FnO_j5hByRGFGKdjTx-u7GQNqZkxbwUDukCm1guYAgn1LO0idayrshOzFuAKgQlK1SybMWiu4ZFPyfI9VH9qxcUPdLbM5vmKTPeAQMxezC8R1do9-DAG7IbvBMbgmjeGtD3-zs_U69M7_yYY-JVrXDbVPy7JNbGrruwPyvXJNxMPt3CdPv389nl_l89vL6_Ozee650EPupffcUaMoiAVKLhUobi0oy5XR3omyssYqJXQpSgvMLLhXxpbIjQZRKb5PTja96Z6XEeNQtHX02DSuw36MBQNluKCSm4Qe_4eu-jF06bpEgWaccc0TBRvKhz7GgFWxDnXrwntBofgUXyTxxaf4Yis-RX5ui8eyxcVX4J_pBPzYADUifj0bJtMvLf8AQDKFFA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Le, T. Hoang Ngan</creator><creator>Kha Gia Quach</creator><creator>Khoa Luu</creator><creator>Chi Nhan Duong</creator><creator>Savvides, Marios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2571-0511</orcidid><orcidid>https://orcid.org/0000-0003-2104-0901</orcidid></search><sort><creationdate>20180501</creationdate><title>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</title><author>Le, T. Hoang Ngan ; Kha Gia Quach ; Khoa Luu ; Chi Nhan Duong ; Savvides, Marios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c5cc3a186104de5356063990693687ca4bf9896647b4b9028d3c689be38704f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active contours</topic><topic>Computing time</topic><topic>Contours</topic><topic>deep learning</topic><topic>Deformation</topic><topic>Energy conservation</topic><topic>Evolution</topic><topic>Image segmentation</topic><topic>Level set</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>recurrent neuron network</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, T. Hoang Ngan</creatorcontrib><creatorcontrib>Kha Gia Quach</creatorcontrib><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Chi Nhan Duong</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, T. Hoang Ngan</au><au>Kha Gia Quach</au><au>Khoa Luu</au><au>Chi Nhan Duong</au><au>Savvides, Marios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>27</volume><issue>5</issue><spage>2393</spage><epage>2407</epage><pages>2393-2407</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994352</pmid><doi>10.1109/TIP.2018.2794205</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2571-0511</orcidid><orcidid>https://orcid.org/0000-0003-2104-0901</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-05, Vol.27 (5), p.2393-2407
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2007232373
source IEEE Electronic Library (IEL)
subjects Active contours
Computing time
Contours
deep learning
Deformation
Energy conservation
Evolution
Image segmentation
Level set
Logic gates
Machine learning
Neural networks
Recurrent neural networks
recurrent neuron network
Semantic segmentation
Semantics
Shape
title Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reformulating%20Level%20Sets%20as%20Deep%20Recurrent%20Neural%20Network%20Approach%20to%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Le,%20T.%20Hoang%20Ngan&rft.date=2018-05-01&rft.volume=27&rft.issue=5&rft.spage=2393&rft.epage=2407&rft.pages=2393-2407&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2794205&rft_dat=%3Cproquest_RIE%3E2007232373%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007232373&rft_id=info:pmid/29994352&rft_ieee_id=8259369&rfr_iscdi=true