Thermomechanical modelling of laser surface glazing for H13 tool steel

A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2018-03, Vol.124 (3), p.1-9, Article 260
Hauptverfasser: Kabir, I. R., Yin, D., Tamanna, N., Naher, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 124
creator Kabir, I. R.
Yin, D.
Tamanna, N.
Naher, S.
description A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
doi_str_mv 10.1007/s00339-018-1671-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2006847168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006847168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWj_OjRBEhSJFoQm05xs5DvnOwLwX8ei66SFRss8XOzI4-hO4pPFIA9VQBODcEqCZUKkrMBZpQwRkByeESTcAIRTQ38hrd1LqHYQRjEzRfbUNpcxv81nU77xJu82dIaddtcI44uRoKrscSnQ94k9zP6RBzwQvKcZ9zwrUPId2iq-hSDXfnPUUf85fVbEGW769vs-cl8bwxPYlCRR-UYIYPtbQ0II2WTjTOrxu9ppFLrRoeHFBwhumGcgfCRcG85FQAn6KHMfdQ8tcx1N7u87F0w0vLAKQWiko9qOio8iXXWkK0h7JrXfm2FOwJlx1x2QGXPeGyZvCw0VMHbbcJ5S_5f9MvdIdq4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006847168</pqid></control><display><type>article</type><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><source>SpringerLink Journals</source><creator>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</creator><creatorcontrib>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</creatorcontrib><description>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1671-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Finite element method ; Glazing ; Kinematics ; Lasers ; Machines ; Manufacturing ; Materials science ; Mathematical models ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Residual stress ; Strain ; Stress concentration ; Surface temperature ; Surfaces and Interfaces ; Temperature distribution ; Thermomechanical analysis ; Thermomechanical treatment ; Thin Films ; Tool steels ; Two dimensional models</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2018-03, Vol.124 (3), p.1-9, Article 260</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</citedby><cites>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-1671-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-1671-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kabir, I. R.</creatorcontrib><creatorcontrib>Yin, D.</creatorcontrib><creatorcontrib>Tamanna, N.</creatorcontrib><creatorcontrib>Naher, S.</creatorcontrib><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Finite element method</subject><subject>Glazing</subject><subject>Kinematics</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Residual stress</subject><subject>Strain</subject><subject>Stress concentration</subject><subject>Surface temperature</subject><subject>Surfaces and Interfaces</subject><subject>Temperature distribution</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><subject>Tool steels</subject><subject>Two dimensional models</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWj_OjRBEhSJFoQm05xs5DvnOwLwX8ei66SFRss8XOzI4-hO4pPFIA9VQBODcEqCZUKkrMBZpQwRkByeESTcAIRTQ38hrd1LqHYQRjEzRfbUNpcxv81nU77xJu82dIaddtcI44uRoKrscSnQ94k9zP6RBzwQvKcZ9zwrUPId2iq-hSDXfnPUUf85fVbEGW769vs-cl8bwxPYlCRR-UYIYPtbQ0II2WTjTOrxu9ppFLrRoeHFBwhumGcgfCRcG85FQAn6KHMfdQ8tcx1N7u87F0w0vLAKQWiko9qOio8iXXWkK0h7JrXfm2FOwJlx1x2QGXPeGyZvCw0VMHbbcJ5S_5f9MvdIdq4Q</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kabir, I. R.</creator><creator>Yin, D.</creator><creator>Tamanna, N.</creator><creator>Naher, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><author>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Finite element method</topic><topic>Glazing</topic><topic>Kinematics</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Residual stress</topic><topic>Strain</topic><topic>Stress concentration</topic><topic>Surface temperature</topic><topic>Surfaces and Interfaces</topic><topic>Temperature distribution</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><topic>Tool steels</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabir, I. R.</creatorcontrib><creatorcontrib>Yin, D.</creatorcontrib><creatorcontrib>Tamanna, N.</creatorcontrib><creatorcontrib>Naher, S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabir, I. R.</au><au>Yin, D.</au><au>Tamanna, N.</au><au>Naher, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical modelling of laser surface glazing for H13 tool steel</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>124</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>260</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1671-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-9, Article 260
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2006847168
source SpringerLink Journals
subjects Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Finite element method
Glazing
Kinematics
Lasers
Machines
Manufacturing
Materials science
Mathematical models
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Residual stress
Strain
Stress concentration
Surface temperature
Surfaces and Interfaces
Temperature distribution
Thermomechanical analysis
Thermomechanical treatment
Thin Films
Tool steels
Two dimensional models
title Thermomechanical modelling of laser surface glazing for H13 tool steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20modelling%20of%20laser%20surface%20glazing%20for%20H13%20tool%20steel&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Kabir,%20I.%20R.&rft.date=2018-03-01&rft.volume=124&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=260&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1671-9&rft_dat=%3Cproquest_cross%3E2006847168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006847168&rft_id=info:pmid/&rfr_iscdi=true