Thermomechanical modelling of laser surface glazing for H13 tool steel
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2018-03, Vol.124 (3), p.1-9, Article 260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | Kabir, I. R. Yin, D. Tamanna, N. Naher, S. |
description | A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel. |
doi_str_mv | 10.1007/s00339-018-1671-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2006847168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006847168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWj_OjRBEhSJFoQm05xs5DvnOwLwX8ei66SFRss8XOzI4-hO4pPFIA9VQBODcEqCZUKkrMBZpQwRkByeESTcAIRTQ38hrd1LqHYQRjEzRfbUNpcxv81nU77xJu82dIaddtcI44uRoKrscSnQ94k9zP6RBzwQvKcZ9zwrUPId2iq-hSDXfnPUUf85fVbEGW769vs-cl8bwxPYlCRR-UYIYPtbQ0II2WTjTOrxu9ppFLrRoeHFBwhumGcgfCRcG85FQAn6KHMfdQ8tcx1N7u87F0w0vLAKQWiko9qOio8iXXWkK0h7JrXfm2FOwJlx1x2QGXPeGyZvCw0VMHbbcJ5S_5f9MvdIdq4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006847168</pqid></control><display><type>article</type><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><source>SpringerLink Journals</source><creator>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</creator><creatorcontrib>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</creatorcontrib><description>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1671-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Finite element method ; Glazing ; Kinematics ; Lasers ; Machines ; Manufacturing ; Materials science ; Mathematical models ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Residual stress ; Strain ; Stress concentration ; Surface temperature ; Surfaces and Interfaces ; Temperature distribution ; Thermomechanical analysis ; Thermomechanical treatment ; Thin Films ; Tool steels ; Two dimensional models</subject><ispartof>Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-9, Article 260</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</citedby><cites>FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-1671-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-1671-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kabir, I. R.</creatorcontrib><creatorcontrib>Yin, D.</creatorcontrib><creatorcontrib>Tamanna, N.</creatorcontrib><creatorcontrib>Naher, S.</creatorcontrib><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Finite element method</subject><subject>Glazing</subject><subject>Kinematics</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Residual stress</subject><subject>Strain</subject><subject>Stress concentration</subject><subject>Surface temperature</subject><subject>Surfaces and Interfaces</subject><subject>Temperature distribution</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><subject>Tool steels</subject><subject>Two dimensional models</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWj_OjRBEhSJFoQm05xs5DvnOwLwX8ei66SFRss8XOzI4-hO4pPFIA9VQBODcEqCZUKkrMBZpQwRkByeESTcAIRTQ38hrd1LqHYQRjEzRfbUNpcxv81nU77xJu82dIaddtcI44uRoKrscSnQ94k9zP6RBzwQvKcZ9zwrUPId2iq-hSDXfnPUUf85fVbEGW769vs-cl8bwxPYlCRR-UYIYPtbQ0II2WTjTOrxu9ppFLrRoeHFBwhumGcgfCRcG85FQAn6KHMfdQ8tcx1N7u87F0w0vLAKQWiko9qOio8iXXWkK0h7JrXfm2FOwJlx1x2QGXPeGyZvCw0VMHbbcJ5S_5f9MvdIdq4Q</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kabir, I. R.</creator><creator>Yin, D.</creator><creator>Tamanna, N.</creator><creator>Naher, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Thermomechanical modelling of laser surface glazing for H13 tool steel</title><author>Kabir, I. R. ; Yin, D. ; Tamanna, N. ; Naher, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f47fce7429363086906986a45acb58b1f368753ea010a928513a04af42c631403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Finite element method</topic><topic>Glazing</topic><topic>Kinematics</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Residual stress</topic><topic>Strain</topic><topic>Stress concentration</topic><topic>Surface temperature</topic><topic>Surfaces and Interfaces</topic><topic>Temperature distribution</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><topic>Tool steels</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabir, I. R.</creatorcontrib><creatorcontrib>Yin, D.</creatorcontrib><creatorcontrib>Tamanna, N.</creatorcontrib><creatorcontrib>Naher, S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabir, I. R.</au><au>Yin, D.</au><au>Tamanna, N.</au><au>Naher, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical modelling of laser surface glazing for H13 tool steel</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>124</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>260</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress–strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1671-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-9, Article 260 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2006847168 |
source | SpringerLink Journals |
subjects | Applied physics Characterization and Evaluation of Materials Condensed Matter Physics Finite element method Glazing Kinematics Lasers Machines Manufacturing Materials science Mathematical models Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Residual stress Strain Stress concentration Surface temperature Surfaces and Interfaces Temperature distribution Thermomechanical analysis Thermomechanical treatment Thin Films Tool steels Two dimensional models |
title | Thermomechanical modelling of laser surface glazing for H13 tool steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20modelling%20of%20laser%20surface%20glazing%20for%20H13%20tool%20steel&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Kabir,%20I.%20R.&rft.date=2018-03-01&rft.volume=124&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=260&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1671-9&rft_dat=%3Cproquest_cross%3E2006847168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006847168&rft_id=info:pmid/&rfr_iscdi=true |