Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure
Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its i...
Gespeichert in:
Veröffentlicht in: | The Journal of risk and insurance 2017-04, Vol.84 (S1), p.393-415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | S1 |
container_start_page | 393 |
container_title | The Journal of risk and insurance |
container_volume | 84 |
creator | Chen, Hua MacMinn, Richard D. Sun, Tao |
description | Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds. |
doi_str_mv | 10.1111/jori.12214 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2006227013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26483856</jstor_id><sourcerecordid>26483856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfiW78VZbWystFVvwGDabTZuQZusmUfLfuzV-3Jw5DMP83ht4AFxiNMCubnNjswEmBLMj0MM-Db0g5P4x6CFEiMdowE_BWVXlCCGORNgDZmFsLYusbuFY73WZ6FJpKMsEzk250e-Hw71x67PNVFZu7uAQjttS7jIFJ1LVxsKR2TeFhH9GC5PoAr5m9RbWWw2nwxVc1bZRdWP1OThJZVHpi-_ZB-vJw3r06M2X09loOPcUFZx5hNBAxAr7KdUMYRqzWPtEcqaIEFSROCZMcM6SMAklF1QHMdWpUpgr15z2wXVnu7fmrdFVHeWmsaX7GBGEAkK4M3XUTUcpa6rK6jTa22wnbRthFB3yjA55Rl95Ohh38EdW6PYfMnpavsx-NFedJq9cUr8aEjBBhR_QT07VgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006227013</pqid></control><display><type>article</type><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</creator><creatorcontrib>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</creatorcontrib><description>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</description><identifier>ISSN: 0022-4367</identifier><identifier>EISSN: 1539-6975</identifier><identifier>DOI: 10.1111/jori.12214</identifier><language>eng</language><publisher>Malvern: Wiley Periodicals, Inc</publisher><subject>Bonds ; Economic models ; Mortality ; Risk management</subject><ispartof>The Journal of risk and insurance, 2017-04, Vol.84 (S1), p.393-415</ispartof><rights>Copyright © 2017 The American Risk and Insurance Association</rights><rights>2017 The Journal of Risk and Insurance</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</citedby><cites>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26483856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26483856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>MacMinn, Richard D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><title>The Journal of risk and insurance</title><description>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</description><subject>Bonds</subject><subject>Economic models</subject><subject>Mortality</subject><subject>Risk management</subject><issn>0022-4367</issn><issn>1539-6975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfiW78VZbWystFVvwGDabTZuQZusmUfLfuzV-3Jw5DMP83ht4AFxiNMCubnNjswEmBLMj0MM-Db0g5P4x6CFEiMdowE_BWVXlCCGORNgDZmFsLYusbuFY73WZ6FJpKMsEzk250e-Hw71x67PNVFZu7uAQjttS7jIFJ1LVxsKR2TeFhH9GC5PoAr5m9RbWWw2nwxVc1bZRdWP1OThJZVHpi-_ZB-vJw3r06M2X09loOPcUFZx5hNBAxAr7KdUMYRqzWPtEcqaIEFSROCZMcM6SMAklF1QHMdWpUpgr15z2wXVnu7fmrdFVHeWmsaX7GBGEAkK4M3XUTUcpa6rK6jTa22wnbRthFB3yjA55Rl95Ohh38EdW6PYfMnpavsx-NFedJq9cUr8aEjBBhR_QT07VgUw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chen, Hua</creator><creator>MacMinn, Richard D.</creator><creator>Sun, Tao</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>201704</creationdate><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><author>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bonds</topic><topic>Economic models</topic><topic>Mortality</topic><topic>Risk management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>MacMinn, Richard D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>The Journal of risk and insurance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hua</au><au>MacMinn, Richard D.</au><au>Sun, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</atitle><jtitle>The Journal of risk and insurance</jtitle><date>2017-04</date><risdate>2017</risdate><volume>84</volume><issue>S1</issue><spage>393</spage><epage>415</epage><pages>393-415</pages><issn>0022-4367</issn><eissn>1539-6975</eissn><abstract>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</abstract><cop>Malvern</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1111/jori.12214</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4367 |
ispartof | The Journal of risk and insurance, 2017-04, Vol.84 (S1), p.393-415 |
issn | 0022-4367 1539-6975 |
language | eng |
recordid | cdi_proquest_journals_2006227013 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Bonds Economic models Mortality Risk management |
title | Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mortality%20Dependence%20and%20Longevity%20Bond%20Pricing:%20A%20Dynamic%20Factor%20Copula%20Mortality%20Model%20With%20the%20GAS%20Structure&rft.jtitle=The%20Journal%20of%20risk%20and%20insurance&rft.au=Chen,%20Hua&rft.date=2017-04&rft.volume=84&rft.issue=S1&rft.spage=393&rft.epage=415&rft.pages=393-415&rft.issn=0022-4367&rft.eissn=1539-6975&rft_id=info:doi/10.1111/jori.12214&rft_dat=%3Cjstor_proqu%3E26483856%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006227013&rft_id=info:pmid/&rft_jstor_id=26483856&rfr_iscdi=true |