Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure

Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of risk and insurance 2017-04, Vol.84 (S1), p.393-415
Hauptverfasser: Chen, Hua, MacMinn, Richard D., Sun, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue S1
container_start_page 393
container_title The Journal of risk and insurance
container_volume 84
creator Chen, Hua
MacMinn, Richard D.
Sun, Tao
description Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.
doi_str_mv 10.1111/jori.12214
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2006227013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26483856</jstor_id><sourcerecordid>26483856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfiW78VZbWystFVvwGDabTZuQZusmUfLfuzV-3Jw5DMP83ht4AFxiNMCubnNjswEmBLMj0MM-Db0g5P4x6CFEiMdowE_BWVXlCCGORNgDZmFsLYusbuFY73WZ6FJpKMsEzk250e-Hw71x67PNVFZu7uAQjttS7jIFJ1LVxsKR2TeFhH9GC5PoAr5m9RbWWw2nwxVc1bZRdWP1OThJZVHpi-_ZB-vJw3r06M2X09loOPcUFZx5hNBAxAr7KdUMYRqzWPtEcqaIEFSROCZMcM6SMAklF1QHMdWpUpgr15z2wXVnu7fmrdFVHeWmsaX7GBGEAkK4M3XUTUcpa6rK6jTa22wnbRthFB3yjA55Rl95Ohh38EdW6PYfMnpavsx-NFedJq9cUr8aEjBBhR_QT07VgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006227013</pqid></control><display><type>article</type><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</creator><creatorcontrib>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</creatorcontrib><description>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</description><identifier>ISSN: 0022-4367</identifier><identifier>EISSN: 1539-6975</identifier><identifier>DOI: 10.1111/jori.12214</identifier><language>eng</language><publisher>Malvern: Wiley Periodicals, Inc</publisher><subject>Bonds ; Economic models ; Mortality ; Risk management</subject><ispartof>The Journal of risk and insurance, 2017-04, Vol.84 (S1), p.393-415</ispartof><rights>Copyright © 2017 The American Risk and Insurance Association</rights><rights>2017 The Journal of Risk and Insurance</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</citedby><cites>FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26483856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26483856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>MacMinn, Richard D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><title>The Journal of risk and insurance</title><description>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</description><subject>Bonds</subject><subject>Economic models</subject><subject>Mortality</subject><subject>Risk management</subject><issn>0022-4367</issn><issn>1539-6975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfiW78VZbWystFVvwGDabTZuQZusmUfLfuzV-3Jw5DMP83ht4AFxiNMCubnNjswEmBLMj0MM-Db0g5P4x6CFEiMdowE_BWVXlCCGORNgDZmFsLYusbuFY73WZ6FJpKMsEzk250e-Hw71x67PNVFZu7uAQjttS7jIFJ1LVxsKR2TeFhH9GC5PoAr5m9RbWWw2nwxVc1bZRdWP1OThJZVHpi-_ZB-vJw3r06M2X09loOPcUFZx5hNBAxAr7KdUMYRqzWPtEcqaIEFSROCZMcM6SMAklF1QHMdWpUpgr15z2wXVnu7fmrdFVHeWmsaX7GBGEAkK4M3XUTUcpa6rK6jTa22wnbRthFB3yjA55Rl95Ohh38EdW6PYfMnpavsx-NFedJq9cUr8aEjBBhR_QT07VgUw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chen, Hua</creator><creator>MacMinn, Richard D.</creator><creator>Sun, Tao</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>201704</creationdate><title>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</title><author>Chen, Hua ; MacMinn, Richard D. ; Sun, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-22368bc15f3e4013b4be52a74c2883c2bb248774d9d9a783e6b3efcc17c7c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bonds</topic><topic>Economic models</topic><topic>Mortality</topic><topic>Risk management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>MacMinn, Richard D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>The Journal of risk and insurance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hua</au><au>MacMinn, Richard D.</au><au>Sun, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure</atitle><jtitle>The Journal of risk and insurance</jtitle><date>2017-04</date><risdate>2017</risdate><volume>84</volume><issue>S1</issue><spage>393</spage><epage>415</epage><pages>393-415</pages><issn>0022-4367</issn><eissn>1539-6975</eissn><abstract>Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/longevity bonds, we borrow CAT bond pricing techniques for mortality/longevity bond pricing. We find that our pricing model generates par spreads that are close to the actual spreads of previously issued mortality/longevity bonds.</abstract><cop>Malvern</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1111/jori.12214</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4367
ispartof The Journal of risk and insurance, 2017-04, Vol.84 (S1), p.393-415
issn 0022-4367
1539-6975
language eng
recordid cdi_proquest_journals_2006227013
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Bonds
Economic models
Mortality
Risk management
title Mortality Dependence and Longevity Bond Pricing: A Dynamic Factor Copula Mortality Model With the GAS Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mortality%20Dependence%20and%20Longevity%20Bond%20Pricing:%20A%20Dynamic%20Factor%20Copula%20Mortality%20Model%20With%20the%20GAS%20Structure&rft.jtitle=The%20Journal%20of%20risk%20and%20insurance&rft.au=Chen,%20Hua&rft.date=2017-04&rft.volume=84&rft.issue=S1&rft.spage=393&rft.epage=415&rft.pages=393-415&rft.issn=0022-4367&rft.eissn=1539-6975&rft_id=info:doi/10.1111/jori.12214&rft_dat=%3Cjstor_proqu%3E26483856%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006227013&rft_id=info:pmid/&rft_jstor_id=26483856&rfr_iscdi=true