Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes

cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2008-07, Vol.118 (7), p.2506
Hauptverfasser: Kawasaki, Yosuke, Kugimiya, Fumitaka, Chikuda, Hirotaka, Kamekura, Satoru, Ikeda, Toshiyuki, Kawamura, Naohiro, Saito, Taku, Shinoda, Yusuke, Higashikawa, Akiro, Yano, Fumiko, Ogasawara, Toru, Ogata, Naoshi, Hoshi, Kazuto, Hofmann, Franz, Woodgett, James R, Nakamura, Kozo, Chung, Ung-il, Kawaguchi, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2506
container_title The Journal of clinical investigation
container_volume 118
creator Kawasaki, Yosuke
Kugimiya, Fumitaka
Chikuda, Hirotaka
Kamekura, Satoru
Ikeda, Toshiyuki
Kawamura, Naohiro
Saito, Taku
Shinoda, Yusuke
Higashikawa, Akiro
Yano, Fumiko
Ogasawara, Toru
Ogata, Naoshi
Hoshi, Kazuto
Hofmann, Franz
Woodgett, James R
Nakamura, Kozo
Chung, Ung-il
Kawaguchi, Hiroshi
description cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate and impaired chondrocyte hypertrophy. To investigate the mechanism of cGKII-mediated chondrocyte hypertrophy, we performed a kinase substrate array and identified glycogen synthase kinase-3beta (GSK-3beta; encoded by Gsk3b) as a principal phosphorylation target of cGKII. In cultured mouse chondrocytes, phosphorylation-mediated inhibition of GSK-3beta was associated with enhanced hypertrophic differentiation. Furthermore, cGKII induction of chondrocyte hypertrophy was suppressed by cotransfection with a phosphorylation-deficient mutant of GSK-3beta. Analyses of mice with compound deficiencies in both protein kinases (Prkg2(-/-)Gsk3b(+/-)) demonstrated that the growth retardation and elongated growth plate associated with cGKII deficiency were partially rescued by haploinsufficiency of Gsk3b. We found that beta-catenin levels decreased in Prkg2(-/-) mice, while overexpression of cGKII increased the accumulation and transactivation function of beta-catenin in mouse chondroprogenitor ATDC5 cells. This effect was blocked by coexpression of phosphorylation-deficient GSK-3beta. These data indicate that hypertrophic differentiation of growth plate chondrocytes during skeletal growth is promoted by phosphorylation and inactivation of GSK-3beta by cGKII.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_200565597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524292991</sourcerecordid><originalsourceid>FETCH-proquest_journals_2005655973</originalsourceid><addsrcrecordid>eNqNj0trAjEUhYO04NT6Hy7uA5lHdFyLVSmC0O6KyDhzh8RHbppkFrPyrzeCuO7qwHcecAYsSaUseZnl5QtLhMhSPp_l5ZC9eX8SIi0KWSTstlPkrSLXX6qgyQC1sPr65PnPEUO1h2MP9Wq74w1aNA2aANZRQG3grE3lETabO7lG5kH1Fl1wZJWuodFtiy429HP42jltEGpFpnFU97Hzzl7b6uJx_NARm3wsvxdrHkd_O_ThcKLOmWgdMiHkVMp44l-hP6XJUfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200565597</pqid></control><display><type>article</type><title>Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kawasaki, Yosuke ; Kugimiya, Fumitaka ; Chikuda, Hirotaka ; Kamekura, Satoru ; Ikeda, Toshiyuki ; Kawamura, Naohiro ; Saito, Taku ; Shinoda, Yusuke ; Higashikawa, Akiro ; Yano, Fumiko ; Ogasawara, Toru ; Ogata, Naoshi ; Hoshi, Kazuto ; Hofmann, Franz ; Woodgett, James R ; Nakamura, Kozo ; Chung, Ung-il ; Kawaguchi, Hiroshi</creator><creatorcontrib>Kawasaki, Yosuke ; Kugimiya, Fumitaka ; Chikuda, Hirotaka ; Kamekura, Satoru ; Ikeda, Toshiyuki ; Kawamura, Naohiro ; Saito, Taku ; Shinoda, Yusuke ; Higashikawa, Akiro ; Yano, Fumiko ; Ogasawara, Toru ; Ogata, Naoshi ; Hoshi, Kazuto ; Hofmann, Franz ; Woodgett, James R ; Nakamura, Kozo ; Chung, Ung-il ; Kawaguchi, Hiroshi</creatorcontrib><description>cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate and impaired chondrocyte hypertrophy. To investigate the mechanism of cGKII-mediated chondrocyte hypertrophy, we performed a kinase substrate array and identified glycogen synthase kinase-3beta (GSK-3beta; encoded by Gsk3b) as a principal phosphorylation target of cGKII. In cultured mouse chondrocytes, phosphorylation-mediated inhibition of GSK-3beta was associated with enhanced hypertrophic differentiation. Furthermore, cGKII induction of chondrocyte hypertrophy was suppressed by cotransfection with a phosphorylation-deficient mutant of GSK-3beta. Analyses of mice with compound deficiencies in both protein kinases (Prkg2(-/-)Gsk3b(+/-)) demonstrated that the growth retardation and elongated growth plate associated with cGKII deficiency were partially rescued by haploinsufficiency of Gsk3b. We found that beta-catenin levels decreased in Prkg2(-/-) mice, while overexpression of cGKII increased the accumulation and transactivation function of beta-catenin in mouse chondroprogenitor ATDC5 cells. This effect was blocked by coexpression of phosphorylation-deficient GSK-3beta. These data indicate that hypertrophic differentiation of growth plate chondrocytes during skeletal growth is promoted by phosphorylation and inactivation of GSK-3beta by cGKII.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><language>eng</language><publisher>Ann Arbor: American Society for Clinical Investigation</publisher><subject>Biomedical research ; Cartilage ; Cell division ; Dwarfism ; Genes ; Kinases ; Peptides ; Phosphorylation ; Proteins ; Vertebrae</subject><ispartof>The Journal of clinical investigation, 2008-07, Vol.118 (7), p.2506</ispartof><rights>Copyright American Society for Clinical Investigation Jul 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Kawasaki, Yosuke</creatorcontrib><creatorcontrib>Kugimiya, Fumitaka</creatorcontrib><creatorcontrib>Chikuda, Hirotaka</creatorcontrib><creatorcontrib>Kamekura, Satoru</creatorcontrib><creatorcontrib>Ikeda, Toshiyuki</creatorcontrib><creatorcontrib>Kawamura, Naohiro</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Shinoda, Yusuke</creatorcontrib><creatorcontrib>Higashikawa, Akiro</creatorcontrib><creatorcontrib>Yano, Fumiko</creatorcontrib><creatorcontrib>Ogasawara, Toru</creatorcontrib><creatorcontrib>Ogata, Naoshi</creatorcontrib><creatorcontrib>Hoshi, Kazuto</creatorcontrib><creatorcontrib>Hofmann, Franz</creatorcontrib><creatorcontrib>Woodgett, James R</creatorcontrib><creatorcontrib>Nakamura, Kozo</creatorcontrib><creatorcontrib>Chung, Ung-il</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><title>Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes</title><title>The Journal of clinical investigation</title><description>cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate and impaired chondrocyte hypertrophy. To investigate the mechanism of cGKII-mediated chondrocyte hypertrophy, we performed a kinase substrate array and identified glycogen synthase kinase-3beta (GSK-3beta; encoded by Gsk3b) as a principal phosphorylation target of cGKII. In cultured mouse chondrocytes, phosphorylation-mediated inhibition of GSK-3beta was associated with enhanced hypertrophic differentiation. Furthermore, cGKII induction of chondrocyte hypertrophy was suppressed by cotransfection with a phosphorylation-deficient mutant of GSK-3beta. Analyses of mice with compound deficiencies in both protein kinases (Prkg2(-/-)Gsk3b(+/-)) demonstrated that the growth retardation and elongated growth plate associated with cGKII deficiency were partially rescued by haploinsufficiency of Gsk3b. We found that beta-catenin levels decreased in Prkg2(-/-) mice, while overexpression of cGKII increased the accumulation and transactivation function of beta-catenin in mouse chondroprogenitor ATDC5 cells. This effect was blocked by coexpression of phosphorylation-deficient GSK-3beta. These data indicate that hypertrophic differentiation of growth plate chondrocytes during skeletal growth is promoted by phosphorylation and inactivation of GSK-3beta by cGKII.</description><subject>Biomedical research</subject><subject>Cartilage</subject><subject>Cell division</subject><subject>Dwarfism</subject><subject>Genes</subject><subject>Kinases</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Vertebrae</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNj0trAjEUhYO04NT6Hy7uA5lHdFyLVSmC0O6KyDhzh8RHbppkFrPyrzeCuO7qwHcecAYsSaUseZnl5QtLhMhSPp_l5ZC9eX8SIi0KWSTstlPkrSLXX6qgyQC1sPr65PnPEUO1h2MP9Wq74w1aNA2aANZRQG3grE3lETabO7lG5kH1Fl1wZJWuodFtiy429HP42jltEGpFpnFU97Hzzl7b6uJx_NARm3wsvxdrHkd_O_ThcKLOmWgdMiHkVMp44l-hP6XJUfw</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Kawasaki, Yosuke</creator><creator>Kugimiya, Fumitaka</creator><creator>Chikuda, Hirotaka</creator><creator>Kamekura, Satoru</creator><creator>Ikeda, Toshiyuki</creator><creator>Kawamura, Naohiro</creator><creator>Saito, Taku</creator><creator>Shinoda, Yusuke</creator><creator>Higashikawa, Akiro</creator><creator>Yano, Fumiko</creator><creator>Ogasawara, Toru</creator><creator>Ogata, Naoshi</creator><creator>Hoshi, Kazuto</creator><creator>Hofmann, Franz</creator><creator>Woodgett, James R</creator><creator>Nakamura, Kozo</creator><creator>Chung, Ung-il</creator><creator>Kawaguchi, Hiroshi</creator><general>American Society for Clinical Investigation</general><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope></search><sort><creationdate>20080701</creationdate><title>Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes</title><author>Kawasaki, Yosuke ; Kugimiya, Fumitaka ; Chikuda, Hirotaka ; Kamekura, Satoru ; Ikeda, Toshiyuki ; Kawamura, Naohiro ; Saito, Taku ; Shinoda, Yusuke ; Higashikawa, Akiro ; Yano, Fumiko ; Ogasawara, Toru ; Ogata, Naoshi ; Hoshi, Kazuto ; Hofmann, Franz ; Woodgett, James R ; Nakamura, Kozo ; Chung, Ung-il ; Kawaguchi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2005655973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical research</topic><topic>Cartilage</topic><topic>Cell division</topic><topic>Dwarfism</topic><topic>Genes</topic><topic>Kinases</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Yosuke</creatorcontrib><creatorcontrib>Kugimiya, Fumitaka</creatorcontrib><creatorcontrib>Chikuda, Hirotaka</creatorcontrib><creatorcontrib>Kamekura, Satoru</creatorcontrib><creatorcontrib>Ikeda, Toshiyuki</creatorcontrib><creatorcontrib>Kawamura, Naohiro</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Shinoda, Yusuke</creatorcontrib><creatorcontrib>Higashikawa, Akiro</creatorcontrib><creatorcontrib>Yano, Fumiko</creatorcontrib><creatorcontrib>Ogasawara, Toru</creatorcontrib><creatorcontrib>Ogata, Naoshi</creatorcontrib><creatorcontrib>Hoshi, Kazuto</creatorcontrib><creatorcontrib>Hofmann, Franz</creatorcontrib><creatorcontrib>Woodgett, James R</creatorcontrib><creatorcontrib>Nakamura, Kozo</creatorcontrib><creatorcontrib>Chung, Ung-il</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Yosuke</au><au>Kugimiya, Fumitaka</au><au>Chikuda, Hirotaka</au><au>Kamekura, Satoru</au><au>Ikeda, Toshiyuki</au><au>Kawamura, Naohiro</au><au>Saito, Taku</au><au>Shinoda, Yusuke</au><au>Higashikawa, Akiro</au><au>Yano, Fumiko</au><au>Ogasawara, Toru</au><au>Ogata, Naoshi</au><au>Hoshi, Kazuto</au><au>Hofmann, Franz</au><au>Woodgett, James R</au><au>Nakamura, Kozo</au><au>Chung, Ung-il</au><au>Kawaguchi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes</atitle><jtitle>The Journal of clinical investigation</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>118</volume><issue>7</issue><spage>2506</spage><pages>2506-</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate and impaired chondrocyte hypertrophy. To investigate the mechanism of cGKII-mediated chondrocyte hypertrophy, we performed a kinase substrate array and identified glycogen synthase kinase-3beta (GSK-3beta; encoded by Gsk3b) as a principal phosphorylation target of cGKII. In cultured mouse chondrocytes, phosphorylation-mediated inhibition of GSK-3beta was associated with enhanced hypertrophic differentiation. Furthermore, cGKII induction of chondrocyte hypertrophy was suppressed by cotransfection with a phosphorylation-deficient mutant of GSK-3beta. Analyses of mice with compound deficiencies in both protein kinases (Prkg2(-/-)Gsk3b(+/-)) demonstrated that the growth retardation and elongated growth plate associated with cGKII deficiency were partially rescued by haploinsufficiency of Gsk3b. We found that beta-catenin levels decreased in Prkg2(-/-) mice, while overexpression of cGKII increased the accumulation and transactivation function of beta-catenin in mouse chondroprogenitor ATDC5 cells. This effect was blocked by coexpression of phosphorylation-deficient GSK-3beta. These data indicate that hypertrophic differentiation of growth plate chondrocytes during skeletal growth is promoted by phosphorylation and inactivation of GSK-3beta by cGKII.</abstract><cop>Ann Arbor</cop><pub>American Society for Clinical Investigation</pub></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2008-07, Vol.118 (7), p.2506
issn 0021-9738
1558-8238
language eng
recordid cdi_proquest_journals_200565597
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Biomedical research
Cartilage
Cell division
Dwarfism
Genes
Kinases
Peptides
Phosphorylation
Proteins
Vertebrae
title Phosphorylation of GSK-3[beta] by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20GSK-3%5Bbeta%5D%20by%20cGMP-dependent%20protein%20kinase%20II%20promotes%20hypertrophic%20differentiation%20of%20murine%20chondrocytes&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Kawasaki,%20Yosuke&rft.date=2008-07-01&rft.volume=118&rft.issue=7&rft.spage=2506&rft.pages=2506-&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/&rft_dat=%3Cproquest%3E1524292991%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200565597&rft_id=info:pmid/&rfr_iscdi=true