Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals

This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of high technology management research 2007, Vol.17 (2), p.125-137
Hauptverfasser: Galbraith, Craig S., DeNoble, Alex F., Ehrlich, Sanford B., Kline, Doug M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 2
container_start_page 125
container_title Journal of high technology management research
container_volume 17
creator Galbraith, Craig S.
DeNoble, Alex F.
Ehrlich, Sanford B.
Kline, Doug M.
description This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.
doi_str_mv 10.1016/j.hitech.2006.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200527788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047831006000216</els_id><sourcerecordid>1225058981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEqXwDRgs9gQ7ThxnAZWKf1IlFpgtxz23CSEuvgTIxFfHVVhYmN5Jd-93dy-KzhlNGGXiskm2dQ9mm6SUioSxhNL0IJoxWZQxE1wehppmRSw5o8fRCWJDKeU8TWfR91J3BL524HskHnTbjkQjAiKxQz94IHtw51q3GQkOxoTONVmQDgav2yD9p_OvRHdrcqNHwDrgdKfbEWskzhLQPhCx15s_pJ13O4e6xdPoyAaBs1-dRy93t8_Lh3j1dP-4XKxik2ayj3Nhi9xITkUJlYAq41nJcm1tXuqsqijfixTCcmq51DwtQ8kNcJkVpqAln0cXEzdsfh8Ae9W4wYdDUYXQ8rQopAxD2TRkvEP0YNXO12_aj4pRtU9aNWpKem8SijEVkg62q8kG4YGPGrxCU0NnYF17ML1au_p_wA-5JosX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200527788</pqid></control><display><type>article</type><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><source>Elsevier ScienceDirect Journals</source><creator>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</creator><creatorcontrib>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</creatorcontrib><description>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</description><identifier>ISSN: 1047-8310</identifier><identifier>EISSN: 1879-1638</identifier><identifier>DOI: 10.1016/j.hitech.2006.11.002</identifier><language>eng</language><publisher>Greenwich: Elsevier Inc</publisher><subject>Alliances ; Bayesian analysis ; Expert assessment ; Forecasting ; Neural networks ; Predictions ; Studies ; Success ; Technology ; Technology commercialization</subject><ispartof>Journal of high technology management research, 2007, Vol.17 (2), p.125-137</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</citedby><cites>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047831006000216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Galbraith, Craig S.</creatorcontrib><creatorcontrib>DeNoble, Alex F.</creatorcontrib><creatorcontrib>Ehrlich, Sanford B.</creatorcontrib><creatorcontrib>Kline, Doug M.</creatorcontrib><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><title>Journal of high technology management research</title><description>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</description><subject>Alliances</subject><subject>Bayesian analysis</subject><subject>Expert assessment</subject><subject>Forecasting</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Studies</subject><subject>Success</subject><subject>Technology</subject><subject>Technology commercialization</subject><issn>1047-8310</issn><issn>1879-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEqXwDRgs9gQ7ThxnAZWKf1IlFpgtxz23CSEuvgTIxFfHVVhYmN5Jd-93dy-KzhlNGGXiskm2dQ9mm6SUioSxhNL0IJoxWZQxE1wehppmRSw5o8fRCWJDKeU8TWfR91J3BL524HskHnTbjkQjAiKxQz94IHtw51q3GQkOxoTONVmQDgav2yD9p_OvRHdrcqNHwDrgdKfbEWskzhLQPhCx15s_pJ13O4e6xdPoyAaBs1-dRy93t8_Lh3j1dP-4XKxik2ayj3Nhi9xITkUJlYAq41nJcm1tXuqsqijfixTCcmq51DwtQ8kNcJkVpqAln0cXEzdsfh8Ae9W4wYdDUYXQ8rQopAxD2TRkvEP0YNXO12_aj4pRtU9aNWpKem8SijEVkg62q8kG4YGPGrxCU0NnYF17ML1au_p_wA-5JosX</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Galbraith, Craig S.</creator><creator>DeNoble, Alex F.</creator><creator>Ehrlich, Sanford B.</creator><creator>Kline, Doug M.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2007</creationdate><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><author>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alliances</topic><topic>Bayesian analysis</topic><topic>Expert assessment</topic><topic>Forecasting</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Studies</topic><topic>Success</topic><topic>Technology</topic><topic>Technology commercialization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galbraith, Craig S.</creatorcontrib><creatorcontrib>DeNoble, Alex F.</creatorcontrib><creatorcontrib>Ehrlich, Sanford B.</creatorcontrib><creatorcontrib>Kline, Doug M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of high technology management research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galbraith, Craig S.</au><au>DeNoble, Alex F.</au><au>Ehrlich, Sanford B.</au><au>Kline, Doug M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</atitle><jtitle>Journal of high technology management research</jtitle><date>2007</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>125</spage><epage>137</epage><pages>125-137</pages><issn>1047-8310</issn><eissn>1879-1638</eissn><abstract>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</abstract><cop>Greenwich</cop><pub>Elsevier Inc</pub><doi>10.1016/j.hitech.2006.11.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-8310
ispartof Journal of high technology management research, 2007, Vol.17 (2), p.125-137
issn 1047-8310
1879-1638
language eng
recordid cdi_proquest_journals_200527788
source Elsevier ScienceDirect Journals
subjects Alliances
Bayesian analysis
Expert assessment
Forecasting
Neural networks
Predictions
Studies
Success
Technology
Technology commercialization
title Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20experts%20really%20assess%20future%20technology%20success?%20A%20neural%20network%20and%20Bayesian%20analysis%20of%20early%20stage%20technology%20proposals&rft.jtitle=Journal%20of%20high%20technology%20management%20research&rft.au=Galbraith,%20Craig%20S.&rft.date=2007&rft.volume=17&rft.issue=2&rft.spage=125&rft.epage=137&rft.pages=125-137&rft.issn=1047-8310&rft.eissn=1879-1638&rft_id=info:doi/10.1016/j.hitech.2006.11.002&rft_dat=%3Cproquest_cross%3E1225058981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200527788&rft_id=info:pmid/&rft_els_id=S1047831006000216&rfr_iscdi=true