Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals
This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant f...
Gespeichert in:
Veröffentlicht in: | Journal of high technology management research 2007, Vol.17 (2), p.125-137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Journal of high technology management research |
container_volume | 17 |
creator | Galbraith, Craig S. DeNoble, Alex F. Ehrlich, Sanford B. Kline, Doug M. |
description | This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables. |
doi_str_mv | 10.1016/j.hitech.2006.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200527788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047831006000216</els_id><sourcerecordid>1225058981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEqXwDRgs9gQ7ThxnAZWKf1IlFpgtxz23CSEuvgTIxFfHVVhYmN5Jd-93dy-KzhlNGGXiskm2dQ9mm6SUioSxhNL0IJoxWZQxE1wehppmRSw5o8fRCWJDKeU8TWfR91J3BL524HskHnTbjkQjAiKxQz94IHtw51q3GQkOxoTONVmQDgav2yD9p_OvRHdrcqNHwDrgdKfbEWskzhLQPhCx15s_pJ13O4e6xdPoyAaBs1-dRy93t8_Lh3j1dP-4XKxik2ayj3Nhi9xITkUJlYAq41nJcm1tXuqsqijfixTCcmq51DwtQ8kNcJkVpqAln0cXEzdsfh8Ae9W4wYdDUYXQ8rQopAxD2TRkvEP0YNXO12_aj4pRtU9aNWpKem8SijEVkg62q8kG4YGPGrxCU0NnYF17ML1au_p_wA-5JosX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200527788</pqid></control><display><type>article</type><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><source>Elsevier ScienceDirect Journals</source><creator>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</creator><creatorcontrib>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</creatorcontrib><description>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</description><identifier>ISSN: 1047-8310</identifier><identifier>EISSN: 1879-1638</identifier><identifier>DOI: 10.1016/j.hitech.2006.11.002</identifier><language>eng</language><publisher>Greenwich: Elsevier Inc</publisher><subject>Alliances ; Bayesian analysis ; Expert assessment ; Forecasting ; Neural networks ; Predictions ; Studies ; Success ; Technology ; Technology commercialization</subject><ispartof>Journal of high technology management research, 2007, Vol.17 (2), p.125-137</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</citedby><cites>FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047831006000216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Galbraith, Craig S.</creatorcontrib><creatorcontrib>DeNoble, Alex F.</creatorcontrib><creatorcontrib>Ehrlich, Sanford B.</creatorcontrib><creatorcontrib>Kline, Doug M.</creatorcontrib><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><title>Journal of high technology management research</title><description>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</description><subject>Alliances</subject><subject>Bayesian analysis</subject><subject>Expert assessment</subject><subject>Forecasting</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Studies</subject><subject>Success</subject><subject>Technology</subject><subject>Technology commercialization</subject><issn>1047-8310</issn><issn>1879-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEqXwDRgs9gQ7ThxnAZWKf1IlFpgtxz23CSEuvgTIxFfHVVhYmN5Jd-93dy-KzhlNGGXiskm2dQ9mm6SUioSxhNL0IJoxWZQxE1wehppmRSw5o8fRCWJDKeU8TWfR91J3BL524HskHnTbjkQjAiKxQz94IHtw51q3GQkOxoTONVmQDgav2yD9p_OvRHdrcqNHwDrgdKfbEWskzhLQPhCx15s_pJ13O4e6xdPoyAaBs1-dRy93t8_Lh3j1dP-4XKxik2ayj3Nhi9xITkUJlYAq41nJcm1tXuqsqijfixTCcmq51DwtQ8kNcJkVpqAln0cXEzdsfh8Ae9W4wYdDUYXQ8rQopAxD2TRkvEP0YNXO12_aj4pRtU9aNWpKem8SijEVkg62q8kG4YGPGrxCU0NnYF17ML1au_p_wA-5JosX</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Galbraith, Craig S.</creator><creator>DeNoble, Alex F.</creator><creator>Ehrlich, Sanford B.</creator><creator>Kline, Doug M.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2007</creationdate><title>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</title><author>Galbraith, Craig S. ; DeNoble, Alex F. ; Ehrlich, Sanford B. ; Kline, Doug M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-56f75c83069eb6eb434915aff59a4bb039a4b866f30f38a3296f33ce3847c7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alliances</topic><topic>Bayesian analysis</topic><topic>Expert assessment</topic><topic>Forecasting</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Studies</topic><topic>Success</topic><topic>Technology</topic><topic>Technology commercialization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galbraith, Craig S.</creatorcontrib><creatorcontrib>DeNoble, Alex F.</creatorcontrib><creatorcontrib>Ehrlich, Sanford B.</creatorcontrib><creatorcontrib>Kline, Doug M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of high technology management research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galbraith, Craig S.</au><au>DeNoble, Alex F.</au><au>Ehrlich, Sanford B.</au><au>Kline, Doug M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals</atitle><jtitle>Journal of high technology management research</jtitle><date>2007</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>125</spage><epage>137</epage><pages>125-137</pages><issn>1047-8310</issn><eissn>1879-1638</eissn><abstract>This paper compares experts' assessments to a set of structural variables to determine whether each effectively predicts technology success. Using 69 homeland security and defense-related technologies, expert reviewers scored each technology on various dimensions as part of a government grant funding process. These technologies were tracked over 3 years and degrees of success recorded. Different predictive models were estimated using an artificial neural network technique, the Bayesian Data Reduction Algorithm, and two regression equations. The results suggest that experts provide little predictive power, and that a reasonable technology success model can be estimated using a limited set of structural variables.</abstract><cop>Greenwich</cop><pub>Elsevier Inc</pub><doi>10.1016/j.hitech.2006.11.002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8310 |
ispartof | Journal of high technology management research, 2007, Vol.17 (2), p.125-137 |
issn | 1047-8310 1879-1638 |
language | eng |
recordid | cdi_proquest_journals_200527788 |
source | Elsevier ScienceDirect Journals |
subjects | Alliances Bayesian analysis Expert assessment Forecasting Neural networks Predictions Studies Success Technology Technology commercialization |
title | Can experts really assess future technology success? A neural network and Bayesian analysis of early stage technology proposals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20experts%20really%20assess%20future%20technology%20success?%20A%20neural%20network%20and%20Bayesian%20analysis%20of%20early%20stage%20technology%20proposals&rft.jtitle=Journal%20of%20high%20technology%20management%20research&rft.au=Galbraith,%20Craig%20S.&rft.date=2007&rft.volume=17&rft.issue=2&rft.spage=125&rft.epage=137&rft.pages=125-137&rft.issn=1047-8310&rft.eissn=1879-1638&rft_id=info:doi/10.1016/j.hitech.2006.11.002&rft_dat=%3Cproquest_cross%3E1225058981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200527788&rft_id=info:pmid/&rft_els_id=S1047831006000216&rfr_iscdi=true |