Wigner functions for fermions in strong magnetic fields
. We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of t...
Gespeichert in:
Veröffentlicht in: | The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2018-02, Vol.54 (2), p.1-12, Article 21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The European physical journal. A, Hadrons and nuclei |
container_volume | 54 |
creator | Sheng, Xin-li Rischke, Dirk H. Vasak, David Wang, Qun |
description | .
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium,
i.e.
, at constant temperature
T
and non-zero fermion-number and chiral-charge chemical potentials
μ
and
μ
5
, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field. |
doi_str_mv | 10.1140/epja/i2018-12414-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2005106790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2005106790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4a3c578163ee1c2335311c5c57c36cb836a12325979fa56f86ce587bec89a68c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC57Uz-bfJUYpaoeBF0VtIY1JS2mxNtge_vWkrevM084b33sCPkGuEW0QOE79d2UmkgKpFypG3-oSMkDPeSsD3098d8JxclLICAE61HJHuLS6Tz03YJTfEPpUm9FX5vDmImJoy5D4tm42tviG6JkS__iiX5CzYdfFXP3NMXh_uX6azdv78-DS9m7eOKTG03DInOoWSeY-OMiYYohP15ph0C8WkRcqo0J0OVsigpPNCdQvvlLZSOTYmN8febe4_d74MZtXvcqovDQUQCLLTUF306HK5LyX7YLY5bmz-MghmD8jsAZkDIHMAZHQNsWOoVHNa-vxX_U_qG541abo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2005106790</pqid></control><display><type>article</type><title>Wigner functions for fermions in strong magnetic fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sheng, Xin-li ; Rischke, Dirk H. ; Vasak, David ; Wang, Qun</creator><creatorcontrib>Sheng, Xin-li ; Rischke, Dirk H. ; Vasak, David ; Wang, Qun</creatorcontrib><description>.
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium,
i.e.
, at constant temperature
T
and non-zero fermion-number and chiral-charge chemical potentials
μ
and
μ
5
, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.</description><identifier>ISSN: 1434-6001</identifier><identifier>EISSN: 1434-601X</identifier><identifier>DOI: 10.1140/epja/i2018-12414-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Charge density ; Dirac equation ; Eigenvectors ; Energy levels ; Fermions ; Frontiers in Nuclear ; Hadrons ; Heavy Ion and Strong Field Physics ; Heavy Ions ; Magnetic fields ; Nuclear Fusion ; Nuclear Physics ; Operators (mathematics) ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Regular Article - Theoretical Physics</subject><ispartof>The European physical journal. A, Hadrons and nuclei, 2018-02, Vol.54 (2), p.1-12, Article 21</ispartof><rights>SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4a3c578163ee1c2335311c5c57c36cb836a12325979fa56f86ce587bec89a68c3</citedby><cites>FETCH-LOGICAL-c385t-4a3c578163ee1c2335311c5c57c36cb836a12325979fa56f86ce587bec89a68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epja/i2018-12414-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epja/i2018-12414-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sheng, Xin-li</creatorcontrib><creatorcontrib>Rischke, Dirk H.</creatorcontrib><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Wang, Qun</creatorcontrib><title>Wigner functions for fermions in strong magnetic fields</title><title>The European physical journal. A, Hadrons and nuclei</title><addtitle>Eur. Phys. J. A</addtitle><description>.
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium,
i.e.
, at constant temperature
T
and non-zero fermion-number and chiral-charge chemical potentials
μ
and
μ
5
, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.</description><subject>Charge density</subject><subject>Dirac equation</subject><subject>Eigenvectors</subject><subject>Energy levels</subject><subject>Fermions</subject><subject>Frontiers in Nuclear</subject><subject>Hadrons</subject><subject>Heavy Ion and Strong Field Physics</subject><subject>Heavy Ions</subject><subject>Magnetic fields</subject><subject>Nuclear Fusion</subject><subject>Nuclear Physics</subject><subject>Operators (mathematics)</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article - Theoretical Physics</subject><issn>1434-6001</issn><issn>1434-601X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC57Uz-bfJUYpaoeBF0VtIY1JS2mxNtge_vWkrevM084b33sCPkGuEW0QOE79d2UmkgKpFypG3-oSMkDPeSsD3098d8JxclLICAE61HJHuLS6Tz03YJTfEPpUm9FX5vDmImJoy5D4tm42tviG6JkS__iiX5CzYdfFXP3NMXh_uX6azdv78-DS9m7eOKTG03DInOoWSeY-OMiYYohP15ph0C8WkRcqo0J0OVsigpPNCdQvvlLZSOTYmN8febe4_d74MZtXvcqovDQUQCLLTUF306HK5LyX7YLY5bmz-MghmD8jsAZkDIHMAZHQNsWOoVHNa-vxX_U_qG541abo</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Sheng, Xin-li</creator><creator>Rischke, Dirk H.</creator><creator>Vasak, David</creator><creator>Wang, Qun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Wigner functions for fermions in strong magnetic fields</title><author>Sheng, Xin-li ; Rischke, Dirk H. ; Vasak, David ; Wang, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4a3c578163ee1c2335311c5c57c36cb836a12325979fa56f86ce587bec89a68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge density</topic><topic>Dirac equation</topic><topic>Eigenvectors</topic><topic>Energy levels</topic><topic>Fermions</topic><topic>Frontiers in Nuclear</topic><topic>Hadrons</topic><topic>Heavy Ion and Strong Field Physics</topic><topic>Heavy Ions</topic><topic>Magnetic fields</topic><topic>Nuclear Fusion</topic><topic>Nuclear Physics</topic><topic>Operators (mathematics)</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article - Theoretical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Xin-li</creatorcontrib><creatorcontrib>Rischke, Dirk H.</creatorcontrib><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Wang, Qun</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Xin-li</au><au>Rischke, Dirk H.</au><au>Vasak, David</au><au>Wang, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wigner functions for fermions in strong magnetic fields</atitle><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle><stitle>Eur. Phys. J. A</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>54</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>21</artnum><issn>1434-6001</issn><eissn>1434-601X</eissn><abstract>.
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium,
i.e.
, at constant temperature
T
and non-zero fermion-number and chiral-charge chemical potentials
μ
and
μ
5
, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epja/i2018-12414-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6001 |
ispartof | The European physical journal. A, Hadrons and nuclei, 2018-02, Vol.54 (2), p.1-12, Article 21 |
issn | 1434-6001 1434-601X |
language | eng |
recordid | cdi_proquest_journals_2005106790 |
source | SpringerLink Journals - AutoHoldings |
subjects | Charge density Dirac equation Eigenvectors Energy levels Fermions Frontiers in Nuclear Hadrons Heavy Ion and Strong Field Physics Heavy Ions Magnetic fields Nuclear Fusion Nuclear Physics Operators (mathematics) Particle and Nuclear Physics Physics Physics and Astronomy Regular Article - Theoretical Physics |
title | Wigner functions for fermions in strong magnetic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wigner%20functions%20for%20fermions%20in%20strong%20magnetic%20fields&rft.jtitle=The%20European%20physical%20journal.%20A,%20Hadrons%20and%20nuclei&rft.au=Sheng,%20Xin-li&rft.date=2018-02-01&rft.volume=54&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=21&rft.issn=1434-6001&rft.eissn=1434-601X&rft_id=info:doi/10.1140/epja/i2018-12414-9&rft_dat=%3Cproquest_cross%3E2005106790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2005106790&rft_id=info:pmid/&rfr_iscdi=true |