Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing

In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2017-12, Vol.91, p.169
Hauptverfasser: Kenel, C, Lis, A, Dawson, K, Stiefel, M, Pecnik, C, Barras, J, Colella, A, Hauser, C, Tatlock, GJ, Leinenbach, C, Wegener, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 169
container_title Intermetallics
container_volume 91
creator Kenel, C
Lis, A
Dawson, K
Stiefel, M
Pecnik, C
Barras, J
Colella, A
Hauser, C
Tatlock, GJ
Leinenbach, C
Wegener, K
description In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.
doi_str_mv 10.1016/j.intermet.2017.09.004
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2003017160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003017160</sourcerecordid><originalsourceid>FETCH-LOGICAL-g650-4fe2f11161efaba7a31ecca91664a057673aa1e3727bd804759d0c2acf45a9b73</originalsourceid><addsrcrecordid>eNotUEtOwzAUtBBIlMIVkCXWCc_52PUKVeUrgbqg--rFeS4uaRJsB9EzcGlCYTXSzGhmNIxdCkgFCHm9TV0bye8ophkIlYJOAYojNhEzpRPIhDxmE9BSJlrp8pSdhbCF0Qh5OWHfL2TesHUGG96Tt53fYWuIY1vz7svVGF3Xck_BhXgQOjtqfHn7ym-SlZs3HJum2_Ped4ZCoJpXex569O-8bzDskIfDOtduDpkjR55jXbvoPomPZYNFE4dfwzk7sdgEuvjHKVvd360Wj8nz8uFpMX9ONrKEpLCUWSGEFGSxQoW5IGNQCykLhFJJlSMKylWmqnoGhSp1DSZDY4sSdaXyKbv6ix03fwwU4nrbDb4dG9cZQD4-IyTkP5FWab8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003017160</pqid></control><display><type>article</type><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</creator><creatorcontrib>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</creatorcontrib><description>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2017.09.004</identifier><language>eng</language><publisher>Barking: Elsevier BV</publisher><subject>Additive manufacturing ; Deformation ; Dispersion hardening alloys ; Dispersion strengthening ; Dispersions ; Grain boundaries ; Intermetallic compounds ; Laser sintering ; Mechanical properties ; Oxidation ; Oxidation resistance ; Oxide dispersion strengthening ; Porosity ; Spark plasma sintering ; Stability analysis ; Studies ; Tensile strength ; Titanium aluminides ; Titanium base alloys ; Ultimate tensile strength ; Yield stress ; Yttrium oxide</subject><ispartof>Intermetallics, 2017-12, Vol.91, p.169</ispartof><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kenel, C</creatorcontrib><creatorcontrib>Lis, A</creatorcontrib><creatorcontrib>Dawson, K</creatorcontrib><creatorcontrib>Stiefel, M</creatorcontrib><creatorcontrib>Pecnik, C</creatorcontrib><creatorcontrib>Barras, J</creatorcontrib><creatorcontrib>Colella, A</creatorcontrib><creatorcontrib>Hauser, C</creatorcontrib><creatorcontrib>Tatlock, GJ</creatorcontrib><creatorcontrib>Leinenbach, C</creatorcontrib><creatorcontrib>Wegener, K</creatorcontrib><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><title>Intermetallics</title><description>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</description><subject>Additive manufacturing</subject><subject>Deformation</subject><subject>Dispersion hardening alloys</subject><subject>Dispersion strengthening</subject><subject>Dispersions</subject><subject>Grain boundaries</subject><subject>Intermetallic compounds</subject><subject>Laser sintering</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxide dispersion strengthening</subject><subject>Porosity</subject><subject>Spark plasma sintering</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Tensile strength</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><subject>Yield stress</subject><subject>Yttrium oxide</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUEtOwzAUtBBIlMIVkCXWCc_52PUKVeUrgbqg--rFeS4uaRJsB9EzcGlCYTXSzGhmNIxdCkgFCHm9TV0bye8ophkIlYJOAYojNhEzpRPIhDxmE9BSJlrp8pSdhbCF0Qh5OWHfL2TesHUGG96Tt53fYWuIY1vz7svVGF3Xck_BhXgQOjtqfHn7ym-SlZs3HJum2_Ped4ZCoJpXex569O-8bzDskIfDOtduDpkjR55jXbvoPomPZYNFE4dfwzk7sdgEuvjHKVvd360Wj8nz8uFpMX9ONrKEpLCUWSGEFGSxQoW5IGNQCykLhFJJlSMKylWmqnoGhSp1DSZDY4sSdaXyKbv6ix03fwwU4nrbDb4dG9cZQD4-IyTkP5FWab8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kenel, C</creator><creator>Lis, A</creator><creator>Dawson, K</creator><creator>Stiefel, M</creator><creator>Pecnik, C</creator><creator>Barras, J</creator><creator>Colella, A</creator><creator>Hauser, C</creator><creator>Tatlock, GJ</creator><creator>Leinenbach, C</creator><creator>Wegener, K</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20171201</creationdate><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><author>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g650-4fe2f11161efaba7a31ecca91664a057673aa1e3727bd804759d0c2acf45a9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additive manufacturing</topic><topic>Deformation</topic><topic>Dispersion hardening alloys</topic><topic>Dispersion strengthening</topic><topic>Dispersions</topic><topic>Grain boundaries</topic><topic>Intermetallic compounds</topic><topic>Laser sintering</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxide dispersion strengthening</topic><topic>Porosity</topic><topic>Spark plasma sintering</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Tensile strength</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><topic>Yield stress</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenel, C</creatorcontrib><creatorcontrib>Lis, A</creatorcontrib><creatorcontrib>Dawson, K</creatorcontrib><creatorcontrib>Stiefel, M</creatorcontrib><creatorcontrib>Pecnik, C</creatorcontrib><creatorcontrib>Barras, J</creatorcontrib><creatorcontrib>Colella, A</creatorcontrib><creatorcontrib>Hauser, C</creatorcontrib><creatorcontrib>Tatlock, GJ</creatorcontrib><creatorcontrib>Leinenbach, C</creatorcontrib><creatorcontrib>Wegener, K</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenel, C</au><au>Lis, A</au><au>Dawson, K</au><au>Stiefel, M</au><au>Pecnik, C</au><au>Barras, J</au><au>Colella, A</au><au>Hauser, C</au><au>Tatlock, GJ</au><au>Leinenbach, C</au><au>Wegener, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</atitle><jtitle>Intermetallics</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>91</volume><spage>169</spage><pages>169-</pages><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</abstract><cop>Barking</cop><pub>Elsevier BV</pub><doi>10.1016/j.intermet.2017.09.004</doi></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2017-12, Vol.91, p.169
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2003017160
source ScienceDirect Journals (5 years ago - present)
subjects Additive manufacturing
Deformation
Dispersion hardening alloys
Dispersion strengthening
Dispersions
Grain boundaries
Intermetallic compounds
Laser sintering
Mechanical properties
Oxidation
Oxidation resistance
Oxide dispersion strengthening
Porosity
Spark plasma sintering
Stability analysis
Studies
Tensile strength
Titanium aluminides
Titanium base alloys
Ultimate tensile strength
Yield stress
Yttrium oxide
title Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20performance%20and%20oxidation%20resistance%20of%20an%20ODS%20?-TiAl%20alloy%20processed%20by%20spark%20plasma%20sintering%20and%20laser%20additive%20manufacturing&rft.jtitle=Intermetallics&rft.au=Kenel,%20C&rft.date=2017-12-01&rft.volume=91&rft.spage=169&rft.pages=169-&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2017.09.004&rft_dat=%3Cproquest%3E2003017160%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003017160&rft_id=info:pmid/&rfr_iscdi=true