Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing
In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited ma...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2017-12, Vol.91, p.169 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 169 |
container_title | Intermetallics |
container_volume | 91 |
creator | Kenel, C Lis, A Dawson, K Stiefel, M Pecnik, C Barras, J Colella, A Hauser, C Tatlock, GJ Leinenbach, C Wegener, K |
description | In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes. |
doi_str_mv | 10.1016/j.intermet.2017.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2003017160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003017160</sourcerecordid><originalsourceid>FETCH-LOGICAL-g650-4fe2f11161efaba7a31ecca91664a057673aa1e3727bd804759d0c2acf45a9b73</originalsourceid><addsrcrecordid>eNotUEtOwzAUtBBIlMIVkCXWCc_52PUKVeUrgbqg--rFeS4uaRJsB9EzcGlCYTXSzGhmNIxdCkgFCHm9TV0bye8ophkIlYJOAYojNhEzpRPIhDxmE9BSJlrp8pSdhbCF0Qh5OWHfL2TesHUGG96Tt53fYWuIY1vz7svVGF3Xck_BhXgQOjtqfHn7ym-SlZs3HJum2_Ped4ZCoJpXex569O-8bzDskIfDOtduDpkjR55jXbvoPomPZYNFE4dfwzk7sdgEuvjHKVvd360Wj8nz8uFpMX9ONrKEpLCUWSGEFGSxQoW5IGNQCykLhFJJlSMKylWmqnoGhSp1DSZDY4sSdaXyKbv6ix03fwwU4nrbDb4dG9cZQD4-IyTkP5FWab8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003017160</pqid></control><display><type>article</type><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</creator><creatorcontrib>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</creatorcontrib><description>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2017.09.004</identifier><language>eng</language><publisher>Barking: Elsevier BV</publisher><subject>Additive manufacturing ; Deformation ; Dispersion hardening alloys ; Dispersion strengthening ; Dispersions ; Grain boundaries ; Intermetallic compounds ; Laser sintering ; Mechanical properties ; Oxidation ; Oxidation resistance ; Oxide dispersion strengthening ; Porosity ; Spark plasma sintering ; Stability analysis ; Studies ; Tensile strength ; Titanium aluminides ; Titanium base alloys ; Ultimate tensile strength ; Yield stress ; Yttrium oxide</subject><ispartof>Intermetallics, 2017-12, Vol.91, p.169</ispartof><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kenel, C</creatorcontrib><creatorcontrib>Lis, A</creatorcontrib><creatorcontrib>Dawson, K</creatorcontrib><creatorcontrib>Stiefel, M</creatorcontrib><creatorcontrib>Pecnik, C</creatorcontrib><creatorcontrib>Barras, J</creatorcontrib><creatorcontrib>Colella, A</creatorcontrib><creatorcontrib>Hauser, C</creatorcontrib><creatorcontrib>Tatlock, GJ</creatorcontrib><creatorcontrib>Leinenbach, C</creatorcontrib><creatorcontrib>Wegener, K</creatorcontrib><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><title>Intermetallics</title><description>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</description><subject>Additive manufacturing</subject><subject>Deformation</subject><subject>Dispersion hardening alloys</subject><subject>Dispersion strengthening</subject><subject>Dispersions</subject><subject>Grain boundaries</subject><subject>Intermetallic compounds</subject><subject>Laser sintering</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxide dispersion strengthening</subject><subject>Porosity</subject><subject>Spark plasma sintering</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Tensile strength</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><subject>Yield stress</subject><subject>Yttrium oxide</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUEtOwzAUtBBIlMIVkCXWCc_52PUKVeUrgbqg--rFeS4uaRJsB9EzcGlCYTXSzGhmNIxdCkgFCHm9TV0bye8ophkIlYJOAYojNhEzpRPIhDxmE9BSJlrp8pSdhbCF0Qh5OWHfL2TesHUGG96Tt53fYWuIY1vz7svVGF3Xck_BhXgQOjtqfHn7ym-SlZs3HJum2_Ped4ZCoJpXex569O-8bzDskIfDOtduDpkjR55jXbvoPomPZYNFE4dfwzk7sdgEuvjHKVvd360Wj8nz8uFpMX9ONrKEpLCUWSGEFGSxQoW5IGNQCykLhFJJlSMKylWmqnoGhSp1DSZDY4sSdaXyKbv6ix03fwwU4nrbDb4dG9cZQD4-IyTkP5FWab8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kenel, C</creator><creator>Lis, A</creator><creator>Dawson, K</creator><creator>Stiefel, M</creator><creator>Pecnik, C</creator><creator>Barras, J</creator><creator>Colella, A</creator><creator>Hauser, C</creator><creator>Tatlock, GJ</creator><creator>Leinenbach, C</creator><creator>Wegener, K</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20171201</creationdate><title>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</title><author>Kenel, C ; Lis, A ; Dawson, K ; Stiefel, M ; Pecnik, C ; Barras, J ; Colella, A ; Hauser, C ; Tatlock, GJ ; Leinenbach, C ; Wegener, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g650-4fe2f11161efaba7a31ecca91664a057673aa1e3727bd804759d0c2acf45a9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additive manufacturing</topic><topic>Deformation</topic><topic>Dispersion hardening alloys</topic><topic>Dispersion strengthening</topic><topic>Dispersions</topic><topic>Grain boundaries</topic><topic>Intermetallic compounds</topic><topic>Laser sintering</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxide dispersion strengthening</topic><topic>Porosity</topic><topic>Spark plasma sintering</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Tensile strength</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><topic>Yield stress</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenel, C</creatorcontrib><creatorcontrib>Lis, A</creatorcontrib><creatorcontrib>Dawson, K</creatorcontrib><creatorcontrib>Stiefel, M</creatorcontrib><creatorcontrib>Pecnik, C</creatorcontrib><creatorcontrib>Barras, J</creatorcontrib><creatorcontrib>Colella, A</creatorcontrib><creatorcontrib>Hauser, C</creatorcontrib><creatorcontrib>Tatlock, GJ</creatorcontrib><creatorcontrib>Leinenbach, C</creatorcontrib><creatorcontrib>Wegener, K</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenel, C</au><au>Lis, A</au><au>Dawson, K</au><au>Stiefel, M</au><au>Pecnik, C</au><au>Barras, J</au><au>Colella, A</au><au>Hauser, C</au><au>Tatlock, GJ</au><au>Leinenbach, C</au><au>Wegener, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing</atitle><jtitle>Intermetallics</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>91</volume><spage>169</spage><pages>169-</pages><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>In this work, the influence of Y2O3 additions on the mechanical properties and oxidation resistance of a Ti-45Al-3Nb (at.%) alloy have been studied. In particular, the mechanical properties from 293 K to 1073 K and oxidation resistance at 1073 K of spark plasma sintered and direct metal deposited material have been examined. At room temperature, higher yield stress (+ 34%) and ultimate tensile strength (+ 14%) at reduced ductility (-17%) is observed for the oxide dispersion strengthened variant compared to its non-strengthened counterpart. The strengthened variant shows superior strength retention up to 1073 K. Strengthened direct metal deposited material shows similar deformation characteristics as sintered material but suffers from premature fracture due to residual porosity. The addition of Y203 increases the oxidation resistance of both sintered and direct metal deposited material. Parabolic growth constants are decreased by -49% and -75% in sintered and direct metal deposited material, respectively. In sintered material the dispersoid size shows only slight changes from 29 nm to 26 nm at 923 K after 987 h and to 32 nm at 1073 K after 924 h demonstrating the high stability of the added particles. TEM analysis reveals abundant grain boundary pinning by the particles contributing to microstructural stability. The results show the potential of oxide dispersion strengthening in titanium aluminides for conventional sintering as well as for additive manufacturing processing routes.</abstract><cop>Barking</cop><pub>Elsevier BV</pub><doi>10.1016/j.intermet.2017.09.004</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-9795 |
ispartof | Intermetallics, 2017-12, Vol.91, p.169 |
issn | 0966-9795 1879-0216 |
language | eng |
recordid | cdi_proquest_journals_2003017160 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Additive manufacturing Deformation Dispersion hardening alloys Dispersion strengthening Dispersions Grain boundaries Intermetallic compounds Laser sintering Mechanical properties Oxidation Oxidation resistance Oxide dispersion strengthening Porosity Spark plasma sintering Stability analysis Studies Tensile strength Titanium aluminides Titanium base alloys Ultimate tensile strength Yield stress Yttrium oxide |
title | Mechanical performance and oxidation resistance of an ODS ?-TiAl alloy processed by spark plasma sintering and laser additive manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20performance%20and%20oxidation%20resistance%20of%20an%20ODS%20?-TiAl%20alloy%20processed%20by%20spark%20plasma%20sintering%20and%20laser%20additive%20manufacturing&rft.jtitle=Intermetallics&rft.au=Kenel,%20C&rft.date=2017-12-01&rft.volume=91&rft.spage=169&rft.pages=169-&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2017.09.004&rft_dat=%3Cproquest%3E2003017160%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003017160&rft_id=info:pmid/&rfr_iscdi=true |