Parameter Determination of a Minimal Model for Brake Squeal
In the research into the mechanism of brake squeal, minimal models with two degrees of freedom (DoFs) are widely used. Compared with the finite element method, the minimal model is more concise and efficient, making it easier to analyze the effect of parameters. However, how to accurately determine...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2018-01, Vol.8 (1), p.37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Applied sciences |
container_volume | 8 |
creator | Chu, Zhigang Zheng, Fei Liang, Lei Yan, Hui Kang, Runcheng |
description | In the research into the mechanism of brake squeal, minimal models with two degrees of freedom (DoFs) are widely used. Compared with the finite element method, the minimal model is more concise and efficient, making it easier to analyze the effect of parameters. However, how to accurately determine its kinetic parameters is rarely reported in the literature. In this paper, firstly, the finite element model of a disc brake is established and the complex eigenvalue analysis (CEA) is carried out to obtain unstable modes of the brake. Then, an unstable mode with seven nodal diameters predicted by CEA is taken as an example to establish the 2-DoF model. In order that the natural frequency, Hopf bifurcation point and real parts of eigenvalues of the minimal model coincide with that of the unstable mode with seven nodal diameters, the response surface method (RSM) is applied to determine the kinetic parameters of the minimal model. Finally, the parameter-optimized minimal model is achieved. Furthermore, the negative slope of friction-velocity characteristic is introduced into the model, and transient analysis (TA) is used to study the effect of braking velocity on stability of the brake system. The results show that the brake system becomes unstable when braking velocity is lower than a critical value. The lower the velocity is, the worse the stability appears, and the higher the brake squeal propensity is. |
doi_str_mv | 10.3390/app8010037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002885657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002885657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e84e3ca62f45625486ec81819921464c0e75447ac64ff53d55083e7d4382768d3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNRe_AsWvAnR2e8NnrTWD2hRUM_LksxCapKNu-nB_96UCjqHN-_wY97wCDlncCVECdd-GCwwAGGOyIyD0YWQzBz_86dkkfMWpimZsAxm5ObVJ9_hiIne77Vrej82sacxUE83Td90vqWbWGNLQ0z0LvlPpG9fO_TtGTkJvs24-N1z8vGwel8-FeuXx-fl7bqoeKnGAq1EUXnNg1SaK2k1VpZZVpacSS0rQKOkNL7SMgQlaqXACjS1FJYbbWsxJxeHu0OKU3Ae3TbuUj9FOg7ArVVamYm6PFBVijknDG5I0_Pp2zFw-37cXz_iBxN_VP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002885657</pqid></control><display><type>article</type><title>Parameter Determination of a Minimal Model for Brake Squeal</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Chu, Zhigang ; Zheng, Fei ; Liang, Lei ; Yan, Hui ; Kang, Runcheng</creator><creatorcontrib>Chu, Zhigang ; Zheng, Fei ; Liang, Lei ; Yan, Hui ; Kang, Runcheng</creatorcontrib><description>In the research into the mechanism of brake squeal, minimal models with two degrees of freedom (DoFs) are widely used. Compared with the finite element method, the minimal model is more concise and efficient, making it easier to analyze the effect of parameters. However, how to accurately determine its kinetic parameters is rarely reported in the literature. In this paper, firstly, the finite element model of a disc brake is established and the complex eigenvalue analysis (CEA) is carried out to obtain unstable modes of the brake. Then, an unstable mode with seven nodal diameters predicted by CEA is taken as an example to establish the 2-DoF model. In order that the natural frequency, Hopf bifurcation point and real parts of eigenvalues of the minimal model coincide with that of the unstable mode with seven nodal diameters, the response surface method (RSM) is applied to determine the kinetic parameters of the minimal model. Finally, the parameter-optimized minimal model is achieved. Furthermore, the negative slope of friction-velocity characteristic is introduced into the model, and transient analysis (TA) is used to study the effect of braking velocity on stability of the brake system. The results show that the brake system becomes unstable when braking velocity is lower than a critical value. The lower the velocity is, the worse the stability appears, and the higher the brake squeal propensity is.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8010037</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Braking systems ; Degrees of freedom ; Disc brakes ; Eigenvalues ; Finite element method ; Hopf bifurcation ; Mathematical models ; Response surface methodology ; Stability ; Velocity</subject><ispartof>Applied sciences, 2018-01, Vol.8 (1), p.37</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e84e3ca62f45625486ec81819921464c0e75447ac64ff53d55083e7d4382768d3</citedby><cites>FETCH-LOGICAL-c295t-e84e3ca62f45625486ec81819921464c0e75447ac64ff53d55083e7d4382768d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Chu, Zhigang</creatorcontrib><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><creatorcontrib>Kang, Runcheng</creatorcontrib><title>Parameter Determination of a Minimal Model for Brake Squeal</title><title>Applied sciences</title><description>In the research into the mechanism of brake squeal, minimal models with two degrees of freedom (DoFs) are widely used. Compared with the finite element method, the minimal model is more concise and efficient, making it easier to analyze the effect of parameters. However, how to accurately determine its kinetic parameters is rarely reported in the literature. In this paper, firstly, the finite element model of a disc brake is established and the complex eigenvalue analysis (CEA) is carried out to obtain unstable modes of the brake. Then, an unstable mode with seven nodal diameters predicted by CEA is taken as an example to establish the 2-DoF model. In order that the natural frequency, Hopf bifurcation point and real parts of eigenvalues of the minimal model coincide with that of the unstable mode with seven nodal diameters, the response surface method (RSM) is applied to determine the kinetic parameters of the minimal model. Finally, the parameter-optimized minimal model is achieved. Furthermore, the negative slope of friction-velocity characteristic is introduced into the model, and transient analysis (TA) is used to study the effect of braking velocity on stability of the brake system. The results show that the brake system becomes unstable when braking velocity is lower than a critical value. The lower the velocity is, the worse the stability appears, and the higher the brake squeal propensity is.</description><subject>Braking systems</subject><subject>Degrees of freedom</subject><subject>Disc brakes</subject><subject>Eigenvalues</subject><subject>Finite element method</subject><subject>Hopf bifurcation</subject><subject>Mathematical models</subject><subject>Response surface methodology</subject><subject>Stability</subject><subject>Velocity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1Lw0AQxRdRsNRe_AsWvAnR2e8NnrTWD2hRUM_LksxCapKNu-nB_96UCjqHN-_wY97wCDlncCVECdd-GCwwAGGOyIyD0YWQzBz_86dkkfMWpimZsAxm5ObVJ9_hiIne77Vrej82sacxUE83Td90vqWbWGNLQ0z0LvlPpG9fO_TtGTkJvs24-N1z8vGwel8-FeuXx-fl7bqoeKnGAq1EUXnNg1SaK2k1VpZZVpacSS0rQKOkNL7SMgQlaqXACjS1FJYbbWsxJxeHu0OKU3Ae3TbuUj9FOg7ArVVamYm6PFBVijknDG5I0_Pp2zFw-37cXz_iBxN_VP0</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chu, Zhigang</creator><creator>Zheng, Fei</creator><creator>Liang, Lei</creator><creator>Yan, Hui</creator><creator>Kang, Runcheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>Parameter Determination of a Minimal Model for Brake Squeal</title><author>Chu, Zhigang ; Zheng, Fei ; Liang, Lei ; Yan, Hui ; Kang, Runcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e84e3ca62f45625486ec81819921464c0e75447ac64ff53d55083e7d4382768d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Braking systems</topic><topic>Degrees of freedom</topic><topic>Disc brakes</topic><topic>Eigenvalues</topic><topic>Finite element method</topic><topic>Hopf bifurcation</topic><topic>Mathematical models</topic><topic>Response surface methodology</topic><topic>Stability</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Zhigang</creatorcontrib><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><creatorcontrib>Kang, Runcheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Zhigang</au><au>Zheng, Fei</au><au>Liang, Lei</au><au>Yan, Hui</au><au>Kang, Runcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Determination of a Minimal Model for Brake Squeal</atitle><jtitle>Applied sciences</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>37</spage><pages>37-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In the research into the mechanism of brake squeal, minimal models with two degrees of freedom (DoFs) are widely used. Compared with the finite element method, the minimal model is more concise and efficient, making it easier to analyze the effect of parameters. However, how to accurately determine its kinetic parameters is rarely reported in the literature. In this paper, firstly, the finite element model of a disc brake is established and the complex eigenvalue analysis (CEA) is carried out to obtain unstable modes of the brake. Then, an unstable mode with seven nodal diameters predicted by CEA is taken as an example to establish the 2-DoF model. In order that the natural frequency, Hopf bifurcation point and real parts of eigenvalues of the minimal model coincide with that of the unstable mode with seven nodal diameters, the response surface method (RSM) is applied to determine the kinetic parameters of the minimal model. Finally, the parameter-optimized minimal model is achieved. Furthermore, the negative slope of friction-velocity characteristic is introduced into the model, and transient analysis (TA) is used to study the effect of braking velocity on stability of the brake system. The results show that the brake system becomes unstable when braking velocity is lower than a critical value. The lower the velocity is, the worse the stability appears, and the higher the brake squeal propensity is.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8010037</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2018-01, Vol.8 (1), p.37 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_proquest_journals_2002885657 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Braking systems Degrees of freedom Disc brakes Eigenvalues Finite element method Hopf bifurcation Mathematical models Response surface methodology Stability Velocity |
title | Parameter Determination of a Minimal Model for Brake Squeal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Determination%20of%20a%20Minimal%20Model%20for%20Brake%20Squeal&rft.jtitle=Applied%20sciences&rft.au=Chu,%20Zhigang&rft.date=2018-01-01&rft.volume=8&rft.issue=1&rft.spage=37&rft.pages=37-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8010037&rft_dat=%3Cproquest_cross%3E2002885657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002885657&rft_id=info:pmid/&rfr_iscdi=true |