Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running

Many extant studies proposed various stabilizing control methods for humanoids during the stance phase while hopping and running. Although these methods contribute to stability during hopping and running, humanoid robots do not swing their legs rapidly during the flight phase to prevent rotation in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-01, Vol.8 (1), p.44
Hauptverfasser: Otani, Takuya, Hashimoto, Kenji, Miyamae, Shunsuke, Ueta, Hiroki, Natsuhara, Akira, Sakaguchi, Masanori, Kawakami, Yasuo, Lim, Hum-Ok, Takanishi, Atsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 44
container_title Applied sciences
container_volume 8
creator Otani, Takuya
Hashimoto, Kenji
Miyamae, Shunsuke
Ueta, Hiroki
Natsuhara, Akira
Sakaguchi, Masanori
Kawakami, Yasuo
Lim, Hum-Ok
Takanishi, Atsuo
description Many extant studies proposed various stabilizing control methods for humanoids during the stance phase while hopping and running. Although these methods contribute to stability during hopping and running, humanoid robots do not swing their legs rapidly during the flight phase to prevent rotation in the yaw direction. Humans utilize their torsos and arms when running to compensate for the angular momentum in the yaw direction generated by leg movement during the flight phase. In this study, we developed an angular momentum control method based on human motion for a humanoid upper body. The method involves calculation of the angular momentum generated by the movement of the humanoid legs and calculation of the torso and arm motions required to compensate for the angular momentum of the legs in the yaw direction. We also developed a humanoid upper-body mechanism having human link length and mass properties, using carbon-fiber-reinforced plastic and a symmetric structure for generating large angular momentum. The humanoid robot developed in this study could generate almost the same angular momentum as that of a human. Furthermore, when suspended in midair, the humanoid robot achieved angular momentum compensation in the yaw direction.
doi_str_mv 10.3390/app8010044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002885398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002885398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b1d25b7c9df5a5cb9c963a09fe59dcc4fb89af8225906450f35e74dbfc72b6173</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOOYu_gVf8CZUk6Zpm-M2f0zYEMQdPJU0P7aONalJigz8461O0Hd57_DhPXgIXRJ8QynHt6LrSkwwzrITNEpxkSc0I8Xpv3yOJiHs8CBOaEnwCH2uu077ZObUAebORu_2IKyClZZbYZvQgjOw6FthXaMCRDdQbadtEFGDcR6mdtPvhYeVa7WNfQuNhbjV8CY-4K7xWsbGWZiJoBUM4acKXnprG7u5QGdG7IOe_PoYrR_uX-eLZPn8-DSfLhNJcxKTmqiU1YXkyjDBZM0lz6nA3GjGlZSZqUsuTJmmjOM8Y9hQpotM1UYWaZ2Tgo7R1bG38-691yFWO9d7O0xWKcZpWTLKy4G6PlLSuxC8NlXnm1b4Q0Vw9X1w9Xcw_QLSAW6S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002885398</pqid></control><display><type>article</type><title>Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Otani, Takuya ; Hashimoto, Kenji ; Miyamae, Shunsuke ; Ueta, Hiroki ; Natsuhara, Akira ; Sakaguchi, Masanori ; Kawakami, Yasuo ; Lim, Hum-Ok ; Takanishi, Atsuo</creator><creatorcontrib>Otani, Takuya ; Hashimoto, Kenji ; Miyamae, Shunsuke ; Ueta, Hiroki ; Natsuhara, Akira ; Sakaguchi, Masanori ; Kawakami, Yasuo ; Lim, Hum-Ok ; Takanishi, Atsuo</creatorcontrib><description>Many extant studies proposed various stabilizing control methods for humanoids during the stance phase while hopping and running. Although these methods contribute to stability during hopping and running, humanoid robots do not swing their legs rapidly during the flight phase to prevent rotation in the yaw direction. Humans utilize their torsos and arms when running to compensate for the angular momentum in the yaw direction generated by leg movement during the flight phase. In this study, we developed an angular momentum control method based on human motion for a humanoid upper body. The method involves calculation of the angular momentum generated by the movement of the humanoid legs and calculation of the torso and arm motions required to compensate for the angular momentum of the legs in the yaw direction. We also developed a humanoid upper-body mechanism having human link length and mass properties, using carbon-fiber-reinforced plastic and a symmetric structure for generating large angular momentum. The humanoid robot developed in this study could generate almost the same angular momentum as that of a human. Furthermore, when suspended in midair, the humanoid robot achieved angular momentum compensation in the yaw direction.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8010044</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Angular momentum ; Arm ; Atmospheric pressure ; Carbon fiber reinforced plastics ; Control methods ; Flight ; Human motion ; Humanoid ; Leg ; Plastics ; Running ; Torso</subject><ispartof>Applied sciences, 2018-01, Vol.8 (1), p.44</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b1d25b7c9df5a5cb9c963a09fe59dcc4fb89af8225906450f35e74dbfc72b6173</citedby><cites>FETCH-LOGICAL-c361t-b1d25b7c9df5a5cb9c963a09fe59dcc4fb89af8225906450f35e74dbfc72b6173</cites><orcidid>0000-0002-5514-6037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Otani, Takuya</creatorcontrib><creatorcontrib>Hashimoto, Kenji</creatorcontrib><creatorcontrib>Miyamae, Shunsuke</creatorcontrib><creatorcontrib>Ueta, Hiroki</creatorcontrib><creatorcontrib>Natsuhara, Akira</creatorcontrib><creatorcontrib>Sakaguchi, Masanori</creatorcontrib><creatorcontrib>Kawakami, Yasuo</creatorcontrib><creatorcontrib>Lim, Hum-Ok</creatorcontrib><creatorcontrib>Takanishi, Atsuo</creatorcontrib><title>Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running</title><title>Applied sciences</title><description>Many extant studies proposed various stabilizing control methods for humanoids during the stance phase while hopping and running. Although these methods contribute to stability during hopping and running, humanoid robots do not swing their legs rapidly during the flight phase to prevent rotation in the yaw direction. Humans utilize their torsos and arms when running to compensate for the angular momentum in the yaw direction generated by leg movement during the flight phase. In this study, we developed an angular momentum control method based on human motion for a humanoid upper body. The method involves calculation of the angular momentum generated by the movement of the humanoid legs and calculation of the torso and arm motions required to compensate for the angular momentum of the legs in the yaw direction. We also developed a humanoid upper-body mechanism having human link length and mass properties, using carbon-fiber-reinforced plastic and a symmetric structure for generating large angular momentum. The humanoid robot developed in this study could generate almost the same angular momentum as that of a human. Furthermore, when suspended in midair, the humanoid robot achieved angular momentum compensation in the yaw direction.</description><subject>Angular momentum</subject><subject>Arm</subject><subject>Atmospheric pressure</subject><subject>Carbon fiber reinforced plastics</subject><subject>Control methods</subject><subject>Flight</subject><subject>Human motion</subject><subject>Humanoid</subject><subject>Leg</subject><subject>Plastics</subject><subject>Running</subject><subject>Torso</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM9LwzAcxYMoOOYu_gVf8CZUk6Zpm-M2f0zYEMQdPJU0P7aONalJigz8461O0Hd57_DhPXgIXRJ8QynHt6LrSkwwzrITNEpxkSc0I8Xpv3yOJiHs8CBOaEnwCH2uu077ZObUAebORu_2IKyClZZbYZvQgjOw6FthXaMCRDdQbadtEFGDcR6mdtPvhYeVa7WNfQuNhbjV8CY-4K7xWsbGWZiJoBUM4acKXnprG7u5QGdG7IOe_PoYrR_uX-eLZPn8-DSfLhNJcxKTmqiU1YXkyjDBZM0lz6nA3GjGlZSZqUsuTJmmjOM8Y9hQpotM1UYWaZ2Tgo7R1bG38-691yFWO9d7O0xWKcZpWTLKy4G6PlLSuxC8NlXnm1b4Q0Vw9X1w9Xcw_QLSAW6S</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Otani, Takuya</creator><creator>Hashimoto, Kenji</creator><creator>Miyamae, Shunsuke</creator><creator>Ueta, Hiroki</creator><creator>Natsuhara, Akira</creator><creator>Sakaguchi, Masanori</creator><creator>Kawakami, Yasuo</creator><creator>Lim, Hum-Ok</creator><creator>Takanishi, Atsuo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5514-6037</orcidid></search><sort><creationdate>20180103</creationdate><title>Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running</title><author>Otani, Takuya ; Hashimoto, Kenji ; Miyamae, Shunsuke ; Ueta, Hiroki ; Natsuhara, Akira ; Sakaguchi, Masanori ; Kawakami, Yasuo ; Lim, Hum-Ok ; Takanishi, Atsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b1d25b7c9df5a5cb9c963a09fe59dcc4fb89af8225906450f35e74dbfc72b6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angular momentum</topic><topic>Arm</topic><topic>Atmospheric pressure</topic><topic>Carbon fiber reinforced plastics</topic><topic>Control methods</topic><topic>Flight</topic><topic>Human motion</topic><topic>Humanoid</topic><topic>Leg</topic><topic>Plastics</topic><topic>Running</topic><topic>Torso</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otani, Takuya</creatorcontrib><creatorcontrib>Hashimoto, Kenji</creatorcontrib><creatorcontrib>Miyamae, Shunsuke</creatorcontrib><creatorcontrib>Ueta, Hiroki</creatorcontrib><creatorcontrib>Natsuhara, Akira</creatorcontrib><creatorcontrib>Sakaguchi, Masanori</creatorcontrib><creatorcontrib>Kawakami, Yasuo</creatorcontrib><creatorcontrib>Lim, Hum-Ok</creatorcontrib><creatorcontrib>Takanishi, Atsuo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otani, Takuya</au><au>Hashimoto, Kenji</au><au>Miyamae, Shunsuke</au><au>Ueta, Hiroki</au><au>Natsuhara, Akira</au><au>Sakaguchi, Masanori</au><au>Kawakami, Yasuo</au><au>Lim, Hum-Ok</au><au>Takanishi, Atsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running</atitle><jtitle>Applied sciences</jtitle><date>2018-01-03</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>44</spage><pages>44-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Many extant studies proposed various stabilizing control methods for humanoids during the stance phase while hopping and running. Although these methods contribute to stability during hopping and running, humanoid robots do not swing their legs rapidly during the flight phase to prevent rotation in the yaw direction. Humans utilize their torsos and arms when running to compensate for the angular momentum in the yaw direction generated by leg movement during the flight phase. In this study, we developed an angular momentum control method based on human motion for a humanoid upper body. The method involves calculation of the angular momentum generated by the movement of the humanoid legs and calculation of the torso and arm motions required to compensate for the angular momentum of the legs in the yaw direction. We also developed a humanoid upper-body mechanism having human link length and mass properties, using carbon-fiber-reinforced plastic and a symmetric structure for generating large angular momentum. The humanoid robot developed in this study could generate almost the same angular momentum as that of a human. Furthermore, when suspended in midair, the humanoid robot achieved angular momentum compensation in the yaw direction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8010044</doi><orcidid>https://orcid.org/0000-0002-5514-6037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2018-01, Vol.8 (1), p.44
issn 2076-3417
2076-3417
language eng
recordid cdi_proquest_journals_2002885398
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Angular momentum
Arm
Atmospheric pressure
Carbon fiber reinforced plastics
Control methods
Flight
Human motion
Humanoid
Leg
Plastics
Running
Torso
title Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper-Body%20Control%20and%20Mechanism%20of%20Humanoids%20to%20Compensate%20for%20Angular%20Momentum%20in%20the%20Yaw%20Direction%20Based%20on%20Human%20Running&rft.jtitle=Applied%20sciences&rft.au=Otani,%20Takuya&rft.date=2018-01-03&rft.volume=8&rft.issue=1&rft.spage=44&rft.pages=44-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8010044&rft_dat=%3Cproquest_cross%3E2002885398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002885398&rft_id=info:pmid/&rfr_iscdi=true