Content‐based image retrieval based on binary signatures cluster graph

In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2018-02, Vol.35 (1), p.n/a
Hauptverfasser: Van, Thanh The, Le, Thanh Manh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Expert systems
container_volume 35
creator Van, Thanh The
Le, Thanh Manh
description In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).
doi_str_mv 10.1111/exsy.12220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002881784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002881784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMQCMEEmNw4QsicUPqsJO0aY9oGgxpEgdAglOUJunoVNqRtEBvfALfyJfQUc74Yst6tuVHyCnCDIe4cB-hnyFjDPbIBEWSRsAzsU8mwJIkEpLBITkKYQMAKGUyIct5U7eubr8_v3IdnKXli1476l3rS_emKzp2m5rmZa19T0O5rnXbeReoqbrQOk_XXm-fj8lBoavgTv7ylDxcLe7ny2h1e30zv1xFhgsBkeASsZCaaVGYJJbWxiIWRnKOmS6sHCrgPEFhYgNWFCiti7M0t0LzOAPNp-Rs3Lv1zWvnQqs2Tefr4aRiACxNUaZioM5HyvgmBO8KtfXDZ75XCGpnSu1MqV9TA4wj_F5Wrv-HVIvHu6dx5gd75mwV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002881784</pqid></control><display><type>article</type><title>Content‐based image retrieval based on binary signatures cluster graph</title><source>Wiley Journals</source><source>Business Source Complete</source><creator>Van, Thanh The ; Le, Thanh Manh</creator><creatorcontrib>Van, Thanh The ; Le, Thanh Manh</creatorcontrib><description>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12220</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; binary signature ; cluster graph ; Clustering ; Clusters ; Color ; Data structures ; Graph theory ; Image management ; image mining ; Image retrieval ; Image segmentation ; Information systems ; Signatures ; Similarity ; similarity measure</subject><ispartof>Expert systems, 2018-02, Vol.35 (1), p.n/a</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</citedby><cites>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</cites><orcidid>0000-0001-8408-2004 ; 0000-0002-4873-3292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Van, Thanh The</creatorcontrib><creatorcontrib>Le, Thanh Manh</creatorcontrib><title>Content‐based image retrieval based on binary signatures cluster graph</title><title>Expert systems</title><description>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</description><subject>Algorithms</subject><subject>binary signature</subject><subject>cluster graph</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Color</subject><subject>Data structures</subject><subject>Graph theory</subject><subject>Image management</subject><subject>image mining</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Information systems</subject><subject>Signatures</subject><subject>Similarity</subject><subject>similarity measure</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMQCMEEmNw4QsicUPqsJO0aY9oGgxpEgdAglOUJunoVNqRtEBvfALfyJfQUc74Yst6tuVHyCnCDIe4cB-hnyFjDPbIBEWSRsAzsU8mwJIkEpLBITkKYQMAKGUyIct5U7eubr8_v3IdnKXli1476l3rS_emKzp2m5rmZa19T0O5rnXbeReoqbrQOk_XXm-fj8lBoavgTv7ylDxcLe7ny2h1e30zv1xFhgsBkeASsZCaaVGYJJbWxiIWRnKOmS6sHCrgPEFhYgNWFCiti7M0t0LzOAPNp-Rs3Lv1zWvnQqs2Tefr4aRiACxNUaZioM5HyvgmBO8KtfXDZ75XCGpnSu1MqV9TA4wj_F5Wrv-HVIvHu6dx5gd75mwV</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Van, Thanh The</creator><creator>Le, Thanh Manh</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8408-2004</orcidid><orcidid>https://orcid.org/0000-0002-4873-3292</orcidid></search><sort><creationdate>201802</creationdate><title>Content‐based image retrieval based on binary signatures cluster graph</title><author>Van, Thanh The ; Le, Thanh Manh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>binary signature</topic><topic>cluster graph</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Color</topic><topic>Data structures</topic><topic>Graph theory</topic><topic>Image management</topic><topic>image mining</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Information systems</topic><topic>Signatures</topic><topic>Similarity</topic><topic>similarity measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van, Thanh The</creatorcontrib><creatorcontrib>Le, Thanh Manh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van, Thanh The</au><au>Le, Thanh Manh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content‐based image retrieval based on binary signatures cluster graph</atitle><jtitle>Expert systems</jtitle><date>2018-02</date><risdate>2018</risdate><volume>35</volume><issue>1</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12220</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8408-2004</orcidid><orcidid>https://orcid.org/0000-0002-4873-3292</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2018-02, Vol.35 (1), p.n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_2002881784
source Wiley Journals; Business Source Complete
subjects Algorithms
binary signature
cluster graph
Clustering
Clusters
Color
Data structures
Graph theory
Image management
image mining
Image retrieval
Image segmentation
Information systems
Signatures
Similarity
similarity measure
title Content‐based image retrieval based on binary signatures cluster graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content%E2%80%90based%20image%20retrieval%20based%20on%20binary%20signatures%20cluster%20graph&rft.jtitle=Expert%20systems&rft.au=Van,%20Thanh%20The&rft.date=2018-02&rft.volume=35&rft.issue=1&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12220&rft_dat=%3Cproquest_cross%3E2002881784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002881784&rft_id=info:pmid/&rfr_iscdi=true