Content‐based image retrieval based on binary signatures cluster graph
In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On t...
Gespeichert in:
Veröffentlicht in: | Expert systems 2018-02, Vol.35 (1), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Expert systems |
container_volume | 35 |
creator | Van, Thanh The Le, Thanh Manh |
description | In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images). |
doi_str_mv | 10.1111/exsy.12220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002881784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002881784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMQCMEEmNw4QsicUPqsJO0aY9oGgxpEgdAglOUJunoVNqRtEBvfALfyJfQUc74Yst6tuVHyCnCDIe4cB-hnyFjDPbIBEWSRsAzsU8mwJIkEpLBITkKYQMAKGUyIct5U7eubr8_v3IdnKXli1476l3rS_emKzp2m5rmZa19T0O5rnXbeReoqbrQOk_XXm-fj8lBoavgTv7ylDxcLe7ny2h1e30zv1xFhgsBkeASsZCaaVGYJJbWxiIWRnKOmS6sHCrgPEFhYgNWFCiti7M0t0LzOAPNp-Rs3Lv1zWvnQqs2Tefr4aRiACxNUaZioM5HyvgmBO8KtfXDZ75XCGpnSu1MqV9TA4wj_F5Wrv-HVIvHu6dx5gd75mwV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002881784</pqid></control><display><type>article</type><title>Content‐based image retrieval based on binary signatures cluster graph</title><source>Wiley Journals</source><source>Business Source Complete</source><creator>Van, Thanh The ; Le, Thanh Manh</creator><creatorcontrib>Van, Thanh The ; Le, Thanh Manh</creatorcontrib><description>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12220</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; binary signature ; cluster graph ; Clustering ; Clusters ; Color ; Data structures ; Graph theory ; Image management ; image mining ; Image retrieval ; Image segmentation ; Information systems ; Signatures ; Similarity ; similarity measure</subject><ispartof>Expert systems, 2018-02, Vol.35 (1), p.n/a</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd</rights><rights>2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</citedby><cites>FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</cites><orcidid>0000-0001-8408-2004 ; 0000-0002-4873-3292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Van, Thanh The</creatorcontrib><creatorcontrib>Le, Thanh Manh</creatorcontrib><title>Content‐based image retrieval based on binary signatures cluster graph</title><title>Expert systems</title><description>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</description><subject>Algorithms</subject><subject>binary signature</subject><subject>cluster graph</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Color</subject><subject>Data structures</subject><subject>Graph theory</subject><subject>Image management</subject><subject>image mining</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Information systems</subject><subject>Signatures</subject><subject>Similarity</subject><subject>similarity measure</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMQCMEEmNw4QsicUPqsJO0aY9oGgxpEgdAglOUJunoVNqRtEBvfALfyJfQUc74Yst6tuVHyCnCDIe4cB-hnyFjDPbIBEWSRsAzsU8mwJIkEpLBITkKYQMAKGUyIct5U7eubr8_v3IdnKXli1476l3rS_emKzp2m5rmZa19T0O5rnXbeReoqbrQOk_XXm-fj8lBoavgTv7ylDxcLe7ny2h1e30zv1xFhgsBkeASsZCaaVGYJJbWxiIWRnKOmS6sHCrgPEFhYgNWFCiti7M0t0LzOAPNp-Rs3Lv1zWvnQqs2Tefr4aRiACxNUaZioM5HyvgmBO8KtfXDZ75XCGpnSu1MqV9TA4wj_F5Wrv-HVIvHu6dx5gd75mwV</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Van, Thanh The</creator><creator>Le, Thanh Manh</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8408-2004</orcidid><orcidid>https://orcid.org/0000-0002-4873-3292</orcidid></search><sort><creationdate>201802</creationdate><title>Content‐based image retrieval based on binary signatures cluster graph</title><author>Van, Thanh The ; Le, Thanh Manh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3440-43711f7a2a4fc657dd5454c73319afd7c73033614c5c0d4f17de598bd4a3590a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>binary signature</topic><topic>cluster graph</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Color</topic><topic>Data structures</topic><topic>Graph theory</topic><topic>Image management</topic><topic>image mining</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Information systems</topic><topic>Signatures</topic><topic>Similarity</topic><topic>similarity measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van, Thanh The</creatorcontrib><creatorcontrib>Le, Thanh Manh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van, Thanh The</au><au>Le, Thanh Manh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content‐based image retrieval based on binary signatures cluster graph</atitle><jtitle>Expert systems</jtitle><date>2018-02</date><risdate>2018</risdate><volume>35</volume><issue>1</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>In this paper, we approach a method of clustering binary signature of image in order to create a clustering graph structure for building the content‐based image retrieval. First, the paper presents the segmentation method based on low‐level visual features including colour and texture of image. On the basis of segmented image, the paper creates binary signature to describe location, colour, and shape of interest objects. In order to match similar images, the paper presents a similarity measure between the images based on binary signature. From that, the paper proposes the method of clustering binary signature to quickly query similar images. At the same time, the graph data structure is built using the partition cluster technique and the rules of binary signatures' distribution of images. On the basis of data structure, we propose a graph creation algorithm, a cluster splitting/merging algorithm, and a similarity image retrieval algorithm. To illustrate the proposed theory, we build an image retrieval application and assess the experimental results on the image datasets including COREL (1,000 images), CBIR images (1,344 images), WANG (10,800 images), MSRDI (15,720 images), and ImageCLEF (20,000 images).</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12220</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8408-2004</orcidid><orcidid>https://orcid.org/0000-0002-4873-3292</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2018-02, Vol.35 (1), p.n/a |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_proquest_journals_2002881784 |
source | Wiley Journals; Business Source Complete |
subjects | Algorithms binary signature cluster graph Clustering Clusters Color Data structures Graph theory Image management image mining Image retrieval Image segmentation Information systems Signatures Similarity similarity measure |
title | Content‐based image retrieval based on binary signatures cluster graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content%E2%80%90based%20image%20retrieval%20based%20on%20binary%20signatures%20cluster%20graph&rft.jtitle=Expert%20systems&rft.au=Van,%20Thanh%20The&rft.date=2018-02&rft.volume=35&rft.issue=1&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12220&rft_dat=%3Cproquest_cross%3E2002881784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002881784&rft_id=info:pmid/&rfr_iscdi=true |