Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks
Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-b...
Gespeichert in:
Veröffentlicht in: | Sustainability 2018-01, Vol.10 (1), p.34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Sustainability |
container_volume | 10 |
creator | Kim, Yangseon Roh, Jae-Hwan Kim, Ha Young |
description | Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models. |
doi_str_mv | 10.3390/su10010034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002779974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002779974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</originalsourceid><addsrcrecordid>eNpNUF1Lw0AQPETBUvviLzjwTYjeRy6Xe9TaqlAVavtquFy2mpr26l6C5N97pYIuy86yM-zAEHLO2ZWUhl2HjjMWW6ZHZCCY5glnih3_20_JKIQ1iyUlNzwbkLeJxaanU4_gbGjr7Tv1KzqvHdDbJh7oXR3ABqDLsOdmPo7XD49tsgDc0CfYeOzpHFyHCNuWPkOHtonQfnv8DGfkZGWbAKNfHJLldLIYPySzl_vH8c0sccKoNrGcWZBVKXmVSzClMVXqMpsqUJYLBzx3UGYClLJOpVynubQitzlo0KVWWg7JxeHvDv1XB6Et1r7DbbQsBGNCa2N0GlWXB5VDHwLCqthhvbHYF5wV-wiLvwjlD1BAYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002779974</pqid></control><display><type>article</type><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</creator><creatorcontrib>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</creatorcontrib><description>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su10010034</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Air temperature ; Climatic data ; Data processing ; Disease ; Fungi ; Grain cultivation ; Incidence ; Long short-term memory ; Long term memory ; Neural networks ; Prediction models ; Recurrent neural networks ; Relative humidity ; Rice blast ; Sustainability</subject><ispartof>Sustainability, 2018-01, Vol.10 (1), p.34</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</citedby><cites>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kim, Yangseon</creatorcontrib><creatorcontrib>Roh, Jae-Hwan</creatorcontrib><creatorcontrib>Kim, Ha Young</creatorcontrib><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><title>Sustainability</title><description>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</description><subject>Agricultural production</subject><subject>Air temperature</subject><subject>Climatic data</subject><subject>Data processing</subject><subject>Disease</subject><subject>Fungi</subject><subject>Grain cultivation</subject><subject>Incidence</subject><subject>Long short-term memory</subject><subject>Long term memory</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Relative humidity</subject><subject>Rice blast</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUF1Lw0AQPETBUvviLzjwTYjeRy6Xe9TaqlAVavtquFy2mpr26l6C5N97pYIuy86yM-zAEHLO2ZWUhl2HjjMWW6ZHZCCY5glnih3_20_JKIQ1iyUlNzwbkLeJxaanU4_gbGjr7Tv1KzqvHdDbJh7oXR3ABqDLsOdmPo7XD49tsgDc0CfYeOzpHFyHCNuWPkOHtonQfnv8DGfkZGWbAKNfHJLldLIYPySzl_vH8c0sccKoNrGcWZBVKXmVSzClMVXqMpsqUJYLBzx3UGYClLJOpVynubQitzlo0KVWWg7JxeHvDv1XB6Et1r7DbbQsBGNCa2N0GlWXB5VDHwLCqthhvbHYF5wV-wiLvwjlD1BAYxg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kim, Yangseon</creator><creator>Roh, Jae-Hwan</creator><creator>Kim, Ha Young</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><author>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Air temperature</topic><topic>Climatic data</topic><topic>Data processing</topic><topic>Disease</topic><topic>Fungi</topic><topic>Grain cultivation</topic><topic>Incidence</topic><topic>Long short-term memory</topic><topic>Long term memory</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Relative humidity</topic><topic>Rice blast</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yangseon</creatorcontrib><creatorcontrib>Roh, Jae-Hwan</creatorcontrib><creatorcontrib>Kim, Ha Young</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yangseon</au><au>Roh, Jae-Hwan</au><au>Kim, Ha Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</atitle><jtitle>Sustainability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>34</spage><pages>34-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su10010034</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2018-01, Vol.10 (1), p.34 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2002779974 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agricultural production Air temperature Climatic data Data processing Disease Fungi Grain cultivation Incidence Long short-term memory Long term memory Neural networks Prediction models Recurrent neural networks Relative humidity Rice blast Sustainability |
title | Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Forecasting%20of%20Rice%20Blast%20Disease%20Using%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Networks&rft.jtitle=Sustainability&rft.au=Kim,%20Yangseon&rft.date=2018-01-01&rft.volume=10&rft.issue=1&rft.spage=34&rft.pages=34-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su10010034&rft_dat=%3Cproquest_cross%3E2002779974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002779974&rft_id=info:pmid/&rfr_iscdi=true |