Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks

Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2018-01, Vol.10 (1), p.34
Hauptverfasser: Kim, Yangseon, Roh, Jae-Hwan, Kim, Ha Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 34
container_title Sustainability
container_volume 10
creator Kim, Yangseon
Roh, Jae-Hwan
Kim, Ha Young
description Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.
doi_str_mv 10.3390/su10010034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002779974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002779974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</originalsourceid><addsrcrecordid>eNpNUF1Lw0AQPETBUvviLzjwTYjeRy6Xe9TaqlAVavtquFy2mpr26l6C5N97pYIuy86yM-zAEHLO2ZWUhl2HjjMWW6ZHZCCY5glnih3_20_JKIQ1iyUlNzwbkLeJxaanU4_gbGjr7Tv1KzqvHdDbJh7oXR3ABqDLsOdmPo7XD49tsgDc0CfYeOzpHFyHCNuWPkOHtonQfnv8DGfkZGWbAKNfHJLldLIYPySzl_vH8c0sccKoNrGcWZBVKXmVSzClMVXqMpsqUJYLBzx3UGYClLJOpVynubQitzlo0KVWWg7JxeHvDv1XB6Et1r7DbbQsBGNCa2N0GlWXB5VDHwLCqthhvbHYF5wV-wiLvwjlD1BAYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002779974</pqid></control><display><type>article</type><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</creator><creatorcontrib>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</creatorcontrib><description>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su10010034</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Air temperature ; Climatic data ; Data processing ; Disease ; Fungi ; Grain cultivation ; Incidence ; Long short-term memory ; Long term memory ; Neural networks ; Prediction models ; Recurrent neural networks ; Relative humidity ; Rice blast ; Sustainability</subject><ispartof>Sustainability, 2018-01, Vol.10 (1), p.34</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</citedby><cites>FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kim, Yangseon</creatorcontrib><creatorcontrib>Roh, Jae-Hwan</creatorcontrib><creatorcontrib>Kim, Ha Young</creatorcontrib><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><title>Sustainability</title><description>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</description><subject>Agricultural production</subject><subject>Air temperature</subject><subject>Climatic data</subject><subject>Data processing</subject><subject>Disease</subject><subject>Fungi</subject><subject>Grain cultivation</subject><subject>Incidence</subject><subject>Long short-term memory</subject><subject>Long term memory</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Relative humidity</subject><subject>Rice blast</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUF1Lw0AQPETBUvviLzjwTYjeRy6Xe9TaqlAVavtquFy2mpr26l6C5N97pYIuy86yM-zAEHLO2ZWUhl2HjjMWW6ZHZCCY5glnih3_20_JKIQ1iyUlNzwbkLeJxaanU4_gbGjr7Tv1KzqvHdDbJh7oXR3ABqDLsOdmPo7XD49tsgDc0CfYeOzpHFyHCNuWPkOHtonQfnv8DGfkZGWbAKNfHJLldLIYPySzl_vH8c0sccKoNrGcWZBVKXmVSzClMVXqMpsqUJYLBzx3UGYClLJOpVynubQitzlo0KVWWg7JxeHvDv1XB6Et1r7DbbQsBGNCa2N0GlWXB5VDHwLCqthhvbHYF5wV-wiLvwjlD1BAYxg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kim, Yangseon</creator><creator>Roh, Jae-Hwan</creator><creator>Kim, Ha Young</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</title><author>Kim, Yangseon ; Roh, Jae-Hwan ; Kim, Ha Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a10ae3db31d83e9b99d4c6a45e5a12ce18ceb62e55ac5417483a28a8e7e7b7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Air temperature</topic><topic>Climatic data</topic><topic>Data processing</topic><topic>Disease</topic><topic>Fungi</topic><topic>Grain cultivation</topic><topic>Incidence</topic><topic>Long short-term memory</topic><topic>Long term memory</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Relative humidity</topic><topic>Rice blast</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yangseon</creatorcontrib><creatorcontrib>Roh, Jae-Hwan</creatorcontrib><creatorcontrib>Kim, Ha Young</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yangseon</au><au>Roh, Jae-Hwan</au><au>Kim, Ha Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks</atitle><jtitle>Sustainability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>34</spage><pages>34-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Among all diseases affecting rice production, rice blast disease has the greatest impact. Thus, monitoring and precise prediction of the occurrence of this disease are important; early prediction of the disease would be especially helpful for prevention. Here, we propose an artificial-intelligence-based model for rice blast disease prediction. Historical data on rice blast occurrence in representative areas of rice production in South Korea and historical climatic data are used to develop a region-specific model for three different regions: Cheolwon, Icheon and Milyang. A rice blast incidence is then predicted a year in advance using long-term memory networks (LSTMs). The predictive performance of the proposed LSTM model is evaluated by varying the input variables (i.e., rice blast disease scores, air temperature, relative humidity and sunshine hours). The most widely cultivated rice varieties are also selected and the prediction results for those varieties are analyzed. Application of the LSTM model to the accumulated rice-blast disease score data confirms successful prediction of rice blast incidence. In all regions, the predictions are most accurate when all four input variables are combined. Rice blast fungus prediction using the proposed LSTM model is variety-based; therefore, this model will be more helpful for rice breeders and rice blast researchers than conventional rice blast prediction models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su10010034</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2018-01, Vol.10 (1), p.34
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2002779974
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agricultural production
Air temperature
Climatic data
Data processing
Disease
Fungi
Grain cultivation
Incidence
Long short-term memory
Long term memory
Neural networks
Prediction models
Recurrent neural networks
Relative humidity
Rice blast
Sustainability
title Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Forecasting%20of%20Rice%20Blast%20Disease%20Using%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Networks&rft.jtitle=Sustainability&rft.au=Kim,%20Yangseon&rft.date=2018-01-01&rft.volume=10&rft.issue=1&rft.spage=34&rft.pages=34-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su10010034&rft_dat=%3Cproquest_cross%3E2002779974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002779974&rft_id=info:pmid/&rfr_iscdi=true