Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm

This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied bionics and biomechanics 2006-06, Vol.3 (2), p.113-119
Hauptverfasser: Erazo Macias, M. José H., Vega, S. Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 113
container_title Applied bionics and biomechanics
container_volume 3
creator Erazo Macias, M. José H.
Vega, S. Alejandro
description This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.
doi_str_mv 10.1155/2006/176825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200272580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186770291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1425-369412d03068c2c74cc1043d77bd14fdf6a5e74fd9fa442078042a57cff000483</originalsourceid><addsrcrecordid>eNotkMFKAzEQhoMoWKsnXyB4lbWTSbLZHpdSq1BQip6XNJvYLdtNTdJD394s9TQfwzfDz0_II4MXxqScIUA5Y6qsUF6RCVNSFMiAX2fO2wI54i25i3EPIJkAPiGbZW9NCv5w9j9BH3edoZ86JRsGWg-6P8cuUj20dNHrGDvXGZ06P1DnA9V047c-jRfBx7SzI9bhcE9unO6jffifU_L9uvxavBXrj9X7ol4XhgmUBS_ngmELHMrKoFHCGAaCt0ptWyZc60otrcowd1oIBFWBQC2VcQ4ARMWn5Ony9xj878nG1Oz9KeTQsck9oEJZQZaeL5LJGWOwrjmG7qDDuWHQjJ2NbtlcOuN_Q4BdJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200272580</pqid></control><display><type>article</type><title>Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm</title><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Erazo Macias, M. José H. ; Vega, S. Alejandro</creator><creatorcontrib>Erazo Macias, M. José H. ; Vega, S. Alejandro</creatorcontrib><description>This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.</description><identifier>ISSN: 1176-2322</identifier><identifier>EISSN: 1754-2103</identifier><identifier>DOI: 10.1155/2006/176825</identifier><language>eng</language><publisher>Amsterdam: Hindawi Limited</publisher><subject>Control algorithms ; Electrodes ; Mathematical analysis ; Studies ; Time series ; Velocity</subject><ispartof>Applied bionics and biomechanics, 2006-06, Vol.3 (2), p.113-119</ispartof><rights>Copyright Woodhead Publishing Limited 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1425-369412d03068c2c74cc1043d77bd14fdf6a5e74fd9fa442078042a57cff000483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Erazo Macias, M. José H.</creatorcontrib><creatorcontrib>Vega, S. Alejandro</creatorcontrib><title>Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm</title><title>Applied bionics and biomechanics</title><description>This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.</description><subject>Control algorithms</subject><subject>Electrodes</subject><subject>Mathematical analysis</subject><subject>Studies</subject><subject>Time series</subject><subject>Velocity</subject><issn>1176-2322</issn><issn>1754-2103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkMFKAzEQhoMoWKsnXyB4lbWTSbLZHpdSq1BQip6XNJvYLdtNTdJD394s9TQfwzfDz0_II4MXxqScIUA5Y6qsUF6RCVNSFMiAX2fO2wI54i25i3EPIJkAPiGbZW9NCv5w9j9BH3edoZ86JRsGWg-6P8cuUj20dNHrGDvXGZ06P1DnA9V047c-jRfBx7SzI9bhcE9unO6jffifU_L9uvxavBXrj9X7ol4XhgmUBS_ngmELHMrKoFHCGAaCt0ptWyZc60otrcowd1oIBFWBQC2VcQ4ARMWn5Ony9xj878nG1Oz9KeTQsck9oEJZQZaeL5LJGWOwrjmG7qDDuWHQjJ2NbtlcOuN_Q4BdJg</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Erazo Macias, M. José H.</creator><creator>Vega, S. Alejandro</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7TK</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060601</creationdate><title>Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm</title><author>Erazo Macias, M. José H. ; Vega, S. Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1425-369412d03068c2c74cc1043d77bd14fdf6a5e74fd9fa442078042a57cff000483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Control algorithms</topic><topic>Electrodes</topic><topic>Mathematical analysis</topic><topic>Studies</topic><topic>Time series</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erazo Macias, M. José H.</creatorcontrib><creatorcontrib>Vega, S. Alejandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied bionics and biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erazo Macias, M. José H.</au><au>Vega, S. Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm</atitle><jtitle>Applied bionics and biomechanics</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>3</volume><issue>2</issue><spage>113</spage><epage>119</epage><pages>113-119</pages><issn>1176-2322</issn><eissn>1754-2103</eissn><abstract>This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.</abstract><cop>Amsterdam</cop><pub>Hindawi Limited</pub><doi>10.1155/2006/176825</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1176-2322
ispartof Applied bionics and biomechanics, 2006-06, Vol.3 (2), p.113-119
issn 1176-2322
1754-2103
language eng
recordid cdi_proquest_journals_200272580
source Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Control algorithms
Electrodes
Mathematical analysis
Studies
Time series
Velocity
title Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromyographic%20Pattern%20Analysis%20and%20Classification%20for%20a%20Robotic%20Prosthetic%20Arm&rft.jtitle=Applied%20bionics%20and%20biomechanics&rft.au=Erazo%20Macias,%20M.%20Jos%C3%A9%20H.&rft.date=2006-06-01&rft.volume=3&rft.issue=2&rft.spage=113&rft.epage=119&rft.pages=113-119&rft.issn=1176-2322&rft.eissn=1754-2103&rft_id=info:doi/10.1155/2006/176825&rft_dat=%3Cproquest_cross%3E1186770291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200272580&rft_id=info:pmid/&rfr_iscdi=true