Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm
Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2018-06, Vol.71 (2), p.407-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 2 |
container_start_page | 407 |
container_title | Journal of global optimization |
container_volume | 71 |
creator | Bradford, Eric Schweidtmann, Artur M. Lapkin, Alexei |
description | Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage. |
doi_str_mv | 10.1007/s10898-018-0609-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2002589592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718421928</galeid><sourcerecordid>A718421928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-aec63e95893ec18a69b241bb2c7b6f1628d13567a1d1aad8b29c52c39ec64f873</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouH78AG8Br1Yz6aZNjiK6CoIXPYc0ndYsbVKTrqC_3iwVPEkIgeF5Zia8hFwAuwbG6psETCpZMMi3YqrgB2QFoi4LrqA6JCumuCgEY3BMTlLaMsaUFHxFxvuuc9ahn-m4G2YXmi3a2X0iDdPsRvdtcs1THKchfDnf043ZpeSMp1MMFlPCdEXTlJ1oBppM5vaU8S01tEePs7PUDH2Ibn4fz8hRZ4aE57_vKXl7uH-9eyyeXzZPd7fPhS2FmAuDtipRCalKtCBNpRq-hqbhtm6qDiouWyhFVRtowZhWNlxZwW2psrfuZF2eksulb17yY4dp1tuwiz6P1JwxnhsLxTN1vVC9GVA734X8CZtPi6OzwWPncv22BrnmoLjMAiyCjSGliJ2eohtN_NLA9D4GvcSgcwx6H4PeD-GLkzLre4x_q_wv_QCcU4yY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002589592</pqid></control><display><type>article</type><title>Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm</title><source>SpringerNature Journals</source><creator>Bradford, Eric ; Schweidtmann, Artur M. ; Lapkin, Alexei</creator><creatorcontrib>Bradford, Eric ; Schweidtmann, Artur M. ; Lapkin, Alexei</creatorcontrib><description>Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-018-0609-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Gaussian process ; Gaussian processes ; Genetic algorithms ; Genetic research ; Iterative methods ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Sampling ; Scaling</subject><ispartof>Journal of global optimization, 2018-06, Vol.71 (2), p.407-438</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-aec63e95893ec18a69b241bb2c7b6f1628d13567a1d1aad8b29c52c39ec64f873</citedby><cites>FETCH-LOGICAL-c355t-aec63e95893ec18a69b241bb2c7b6f1628d13567a1d1aad8b29c52c39ec64f873</cites><orcidid>0000-0001-7621-0889 ; 0000-0002-0803-0576 ; 0000-0001-8885-6847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-018-0609-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-018-0609-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bradford, Eric</creatorcontrib><creatorcontrib>Schweidtmann, Artur M.</creatorcontrib><creatorcontrib>Lapkin, Alexei</creatorcontrib><title>Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Sampling</subject><subject>Scaling</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1LxDAQhoMouH78AG8Br1Yz6aZNjiK6CoIXPYc0ndYsbVKTrqC_3iwVPEkIgeF5Zia8hFwAuwbG6psETCpZMMi3YqrgB2QFoi4LrqA6JCumuCgEY3BMTlLaMsaUFHxFxvuuc9ahn-m4G2YXmi3a2X0iDdPsRvdtcs1THKchfDnf043ZpeSMp1MMFlPCdEXTlJ1oBppM5vaU8S01tEePs7PUDH2Ibn4fz8hRZ4aE57_vKXl7uH-9eyyeXzZPd7fPhS2FmAuDtipRCalKtCBNpRq-hqbhtm6qDiouWyhFVRtowZhWNlxZwW2psrfuZF2eksulb17yY4dp1tuwiz6P1JwxnhsLxTN1vVC9GVA734X8CZtPi6OzwWPncv22BrnmoLjMAiyCjSGliJ2eohtN_NLA9D4GvcSgcwx6H4PeD-GLkzLre4x_q_wv_QCcU4yY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bradford, Eric</creator><creator>Schweidtmann, Artur M.</creator><creator>Lapkin, Alexei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7621-0889</orcidid><orcidid>https://orcid.org/0000-0002-0803-0576</orcidid><orcidid>https://orcid.org/0000-0001-8885-6847</orcidid></search><sort><creationdate>20180601</creationdate><title>Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm</title><author>Bradford, Eric ; Schweidtmann, Artur M. ; Lapkin, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-aec63e95893ec18a69b241bb2c7b6f1628d13567a1d1aad8b29c52c39ec64f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Sampling</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradford, Eric</creatorcontrib><creatorcontrib>Schweidtmann, Artur M.</creatorcontrib><creatorcontrib>Lapkin, Alexei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradford, Eric</au><au>Schweidtmann, Artur M.</au><au>Lapkin, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>71</volume><issue>2</issue><spage>407</spage><epage>438</epage><pages>407-438</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-018-0609-2</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-7621-0889</orcidid><orcidid>https://orcid.org/0000-0002-0803-0576</orcidid><orcidid>https://orcid.org/0000-0001-8885-6847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2018-06, Vol.71 (2), p.407-438 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2002589592 |
source | SpringerNature Journals |
subjects | Algorithms Computer Science Gaussian process Gaussian processes Genetic algorithms Genetic research Iterative methods Mathematical analysis Mathematics Mathematics and Statistics Multiple objective analysis Operations Research/Decision Theory Optimization Real Functions Sampling Scaling |
title | Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20multiobjective%20optimization%20employing%20Gaussian%20processes,%20spectral%20sampling%20and%20a%20genetic%20algorithm&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Bradford,%20Eric&rft.date=2018-06-01&rft.volume=71&rft.issue=2&rft.spage=407&rft.epage=438&rft.pages=407-438&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-018-0609-2&rft_dat=%3Cgale_proqu%3EA718421928%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002589592&rft_id=info:pmid/&rft_galeid=A718421928&rfr_iscdi=true |