Characterizing arbitrarily slow convergence in the method of alternating projections

Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2009-07, Vol.16 (4), p.413-425
Hauptverfasser: Bauschke, Heinz H., Deutsch, Frank, Hundal, Hein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 4
container_start_page 413
container_title International transactions in operational research
container_volume 16
creator Bauschke, Heinz H.
Deutsch, Frank
Hundal, Hein
description Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the theorem itself is correct. We give a different proof that uses the multiplicative form of the spectral theorem, and the theorem holds in any real or complex Hilbert space, not just in a real Hilbert space.
doi_str_mv 10.1111/j.1475-3995.2008.00682.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200250179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746618811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-51d4fd292162842b8cfeb6c4590b37a4861a3fac4a83851fbd27751665a51f203</originalsourceid><addsrcrecordid>eNqN0EFPwyAUB3BiNHFOvwPx3gq0UHrwYKZuSxaXuBqPhLZ0o3ZlQuc2P73UmZ3lAuS934P8AYAYhdivuzrEcUKDKE1pSBDiIUKMk3B_BganwjkYoJSlAUOYXYIr52qEEKY4GYBstJJWFp2y-lu3SyhtrjsrrW4O0DVmBwvTfim7VG2hoG5ht1JwrbqVKaGpoGw8bGXXy401tSo6bVp3DS4q2Th187cPwdvzUzaaBLP5eDp6mAVFTFMSUFzGVUlSghnhMcl5Uamc9TWUR4mMOcMyqmQRSx5xiqu8JElCMWNU-htB0RDcHuf6tz-3ynWiNlv_n8YJHwWhCCepb-LHpsIa56yqxMbqtbQHgZHoIxS16JMSfVK94-I3QrH39P5Id7pRh387Mc3mr_7kfXD02nVqf_LSfgiWRJ6-v4zFeIIfF5MFFln0AwfNhz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200250179</pqid></control><display><type>article</type><title>Characterizing arbitrarily slow convergence in the method of alternating projections</title><source>Access via Wiley Online Library</source><source>EBSCOhost Business Source Complete</source><creator>Bauschke, Heinz H. ; Deutsch, Frank ; Hundal, Hein</creator><creatorcontrib>Bauschke, Heinz H. ; Deutsch, Frank ; Hundal, Hein</creatorcontrib><description>Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the theorem itself is correct. We give a different proof that uses the multiplicative form of the spectral theorem, and the theorem holds in any real or complex Hilbert space, not just in a real Hilbert space.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/j.1475-3995.2008.00682.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>alternating projections ; angle between subspaces ; cyclic projections ; Errors ; Hilbert space ; Operations research ; orthogonal projections ; rate of convergence of the method of alternating projections ; Studies ; Theorems</subject><ispartof>International transactions in operational research, 2009-07, Vol.16 (4), p.413-425</ispartof><rights>2009 International Federation of Operational Research Societies. No claim to original public domain works</rights><rights>Journal compilation © 2009 International Federation of Operational Research Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-51d4fd292162842b8cfeb6c4590b37a4861a3fac4a83851fbd27751665a51f203</citedby><cites>FETCH-LOGICAL-c4592-51d4fd292162842b8cfeb6c4590b37a4861a3fac4a83851fbd27751665a51f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1475-3995.2008.00682.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1475-3995.2008.00682.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bauschke, Heinz H.</creatorcontrib><creatorcontrib>Deutsch, Frank</creatorcontrib><creatorcontrib>Hundal, Hein</creatorcontrib><title>Characterizing arbitrarily slow convergence in the method of alternating projections</title><title>International transactions in operational research</title><description>Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the theorem itself is correct. We give a different proof that uses the multiplicative form of the spectral theorem, and the theorem holds in any real or complex Hilbert space, not just in a real Hilbert space.</description><subject>alternating projections</subject><subject>angle between subspaces</subject><subject>cyclic projections</subject><subject>Errors</subject><subject>Hilbert space</subject><subject>Operations research</subject><subject>orthogonal projections</subject><subject>rate of convergence of the method of alternating projections</subject><subject>Studies</subject><subject>Theorems</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN0EFPwyAUB3BiNHFOvwPx3gq0UHrwYKZuSxaXuBqPhLZ0o3ZlQuc2P73UmZ3lAuS934P8AYAYhdivuzrEcUKDKE1pSBDiIUKMk3B_BganwjkYoJSlAUOYXYIr52qEEKY4GYBstJJWFp2y-lu3SyhtrjsrrW4O0DVmBwvTfim7VG2hoG5ht1JwrbqVKaGpoGw8bGXXy401tSo6bVp3DS4q2Th187cPwdvzUzaaBLP5eDp6mAVFTFMSUFzGVUlSghnhMcl5Uamc9TWUR4mMOcMyqmQRSx5xiqu8JElCMWNU-htB0RDcHuf6tz-3ynWiNlv_n8YJHwWhCCepb-LHpsIa56yqxMbqtbQHgZHoIxS16JMSfVK94-I3QrH39P5Id7pRh387Mc3mr_7kfXD02nVqf_LSfgiWRJ6-v4zFeIIfF5MFFln0AwfNhz8</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Bauschke, Heinz H.</creator><creator>Deutsch, Frank</creator><creator>Hundal, Hein</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200907</creationdate><title>Characterizing arbitrarily slow convergence in the method of alternating projections</title><author>Bauschke, Heinz H. ; Deutsch, Frank ; Hundal, Hein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-51d4fd292162842b8cfeb6c4590b37a4861a3fac4a83851fbd27751665a51f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>alternating projections</topic><topic>angle between subspaces</topic><topic>cyclic projections</topic><topic>Errors</topic><topic>Hilbert space</topic><topic>Operations research</topic><topic>orthogonal projections</topic><topic>rate of convergence of the method of alternating projections</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauschke, Heinz H.</creatorcontrib><creatorcontrib>Deutsch, Frank</creatorcontrib><creatorcontrib>Hundal, Hein</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauschke, Heinz H.</au><au>Deutsch, Frank</au><au>Hundal, Hein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing arbitrarily slow convergence in the method of alternating projections</atitle><jtitle>International transactions in operational research</jtitle><date>2009-07</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>413</spage><epage>425</epage><pages>413-425</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the theorem itself is correct. We give a different proof that uses the multiplicative form of the spectral theorem, and the theorem holds in any real or complex Hilbert space, not just in a real Hilbert space.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1475-3995.2008.00682.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2009-07, Vol.16 (4), p.413-425
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_200250179
source Access via Wiley Online Library; EBSCOhost Business Source Complete
subjects alternating projections
angle between subspaces
cyclic projections
Errors
Hilbert space
Operations research
orthogonal projections
rate of convergence of the method of alternating projections
Studies
Theorems
title Characterizing arbitrarily slow convergence in the method of alternating projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20arbitrarily%20slow%20convergence%20in%20the%20method%20of%20alternating%20projections&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Bauschke,%20Heinz%20H.&rft.date=2009-07&rft.volume=16&rft.issue=4&rft.spage=413&rft.epage=425&rft.pages=413-425&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/j.1475-3995.2008.00682.x&rft_dat=%3Cproquest_cross%3E1746618811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200250179&rft_id=info:pmid/&rfr_iscdi=true