Characterizing arbitrarily slow convergence in the method of alternating projections
Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the...
Gespeichert in:
Veröffentlicht in: | International transactions in operational research 2009-07, Vol.16 (4), p.413-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bauschke, Borwein, and Lewis have stated a trichotomy theorem that characterizes when the convergence of the method of alternating projections can be arbitrarily slow. However, there are two errors in their proof of this theorem. In this note, we show that although one of the errors is critical, the theorem itself is correct. We give a different proof that uses the multiplicative form of the spectral theorem, and the theorem holds in any real or complex Hilbert space, not just in a real Hilbert space. |
---|---|
ISSN: | 0969-6016 1475-3995 |
DOI: | 10.1111/j.1475-3995.2008.00682.x |