General stability of memory-type thermoelastic Timoshenko beam acting on shear force

In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2018-03, Vol.30 (2), p.291-300
1. Verfasser: Apalara, Tijani A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 291
container_title Continuum mechanics and thermodynamics
container_volume 30
creator Apalara, Tijani A.
description In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895–6906, 2011 , Acta Math Sci 33(1):23–40, 2013 ), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.
doi_str_mv 10.1007/s00161-017-0601-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2002401909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547076246</galeid><sourcerecordid>A547076246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-5b307497d92584403071df0c3b9d3d60adedc9a577c2a942c80e64a05a6193113</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FJkzTmKOIXCF7Wc8im0zXaNmsSD_33Rip4kjkM8zLPfLyEnHO45AD6KgPwljPgmkELnM0HZMWlaBgYZQ7JCoxQjHOtjslJzu9QGaPEimwecMLkBpqL24YhlJnGno44xjSzMu-RljdMY8TB5RI83YQx5jecPiLdohup8yVMOxonWlWXaB-Tx1Ny1Lsh49lvXpPX-7vN7SN7fnl4ur15Zl4oVZjaCtDS6M406lpKqBXvevBiazrRteA67LxxSmvfOCMbfw3YSgfKtdwIzsWaXCxz9yl-fmEu9j1-pamutA1AI4Gb-veaXC5dOzegDVMfS3K-Rodj8HHCPlT9RkkNum1kWwG-AD7FnBP2dp_C6NJsOdgft-3itq1u2x-37VyZZmFy7Z12mP5O-R_6BhbBgcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002401909</pqid></control><display><type>article</type><title>General stability of memory-type thermoelastic Timoshenko beam acting on shear force</title><source>SpringerLink Journals</source><creator>Apalara, Tijani A.</creator><creatorcontrib>Apalara, Tijani A.</creatorcontrib><description>In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895–6906, 2011 , Acta Math Sci 33(1):23–40, 2013 ), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-017-0601-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Computer memory ; Dirichlet problem ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Article ; Physics ; Physics and Astronomy ; Stability ; Structural Materials ; Theoretical and Applied Mechanics ; Wave propagation</subject><ispartof>Continuum mechanics and thermodynamics, 2018-03, Vol.30 (2), p.291-300</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Continuum Mechanics and Thermodynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-5b307497d92584403071df0c3b9d3d60adedc9a577c2a942c80e64a05a6193113</citedby><cites>FETCH-LOGICAL-c355t-5b307497d92584403071df0c3b9d3d60adedc9a577c2a942c80e64a05a6193113</cites><orcidid>0000-0003-1813-6646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-017-0601-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-017-0601-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Apalara, Tijani A.</creatorcontrib><title>General stability of memory-type thermoelastic Timoshenko beam acting on shear force</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895–6906, 2011 , Acta Math Sci 33(1):23–40, 2013 ), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Computer memory</subject><subject>Dirichlet problem</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave propagation</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FJkzTmKOIXCF7Wc8im0zXaNmsSD_33Rip4kjkM8zLPfLyEnHO45AD6KgPwljPgmkELnM0HZMWlaBgYZQ7JCoxQjHOtjslJzu9QGaPEimwecMLkBpqL24YhlJnGno44xjSzMu-RljdMY8TB5RI83YQx5jecPiLdohup8yVMOxonWlWXaB-Tx1Ny1Lsh49lvXpPX-7vN7SN7fnl4ur15Zl4oVZjaCtDS6M406lpKqBXvevBiazrRteA67LxxSmvfOCMbfw3YSgfKtdwIzsWaXCxz9yl-fmEu9j1-pamutA1AI4Gb-veaXC5dOzegDVMfS3K-Rodj8HHCPlT9RkkNum1kWwG-AD7FnBP2dp_C6NJsOdgft-3itq1u2x-37VyZZmFy7Z12mP5O-R_6BhbBgcY</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Apalara, Tijani A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1813-6646</orcidid></search><sort><creationdate>20180301</creationdate><title>General stability of memory-type thermoelastic Timoshenko beam acting on shear force</title><author>Apalara, Tijani A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-5b307497d92584403071df0c3b9d3d60adedc9a577c2a942c80e64a05a6193113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Computer memory</topic><topic>Dirichlet problem</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apalara, Tijani A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apalara, Tijani A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General stability of memory-type thermoelastic Timoshenko beam acting on shear force</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>291</spage><epage>300</epage><pages>291-300</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895–6906, 2011 , Acta Math Sci 33(1):23–40, 2013 ), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-017-0601-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1813-6646</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2018-03, Vol.30 (2), p.291-300
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2002401909
source SpringerLink Journals
subjects Boundary conditions
Classical and Continuum Physics
Computer memory
Dirichlet problem
Engineering Thermodynamics
Heat and Mass Transfer
Original Article
Physics
Physics and Astronomy
Stability
Structural Materials
Theoretical and Applied Mechanics
Wave propagation
title General stability of memory-type thermoelastic Timoshenko beam acting on shear force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20stability%20of%20memory-type%20thermoelastic%20Timoshenko%20beam%20acting%20on%20shear%20force&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Apalara,%20Tijani%20A.&rft.date=2018-03-01&rft.volume=30&rft.issue=2&rft.spage=291&rft.epage=300&rft.pages=291-300&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-017-0601-y&rft_dat=%3Cgale_proqu%3EA547076246%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002401909&rft_id=info:pmid/&rft_galeid=A547076246&rfr_iscdi=true